格物斯坦传感器的优势在于工业精度与教育易用性的统一:微米级硬件适配:传感器接口与铝合金结构件采用0.01mm公差设计,确保超声探头、红外发射器等模块的安装稳定性,抗冲击性较塑料件提升300%,支持千次拆装无损耗;全栈式信号处理:内置放大滤波电路(如应变式称重传感器的惠斯通电桥),直接输出校准后数字信号,学生无需额外搭建电路即可通过I²C/UART读取数据,降低电子工程门槛;跨平台编程融合:在图形化软件GScratch中,传感器数据被封装为“环境光强度”“障碍物距离”等积木块,支持拖拽式逻辑设计;高阶开发者则可调用ROS驱动包(如OpenCV视觉库),实现Python/C++原生控制。兼容开源第三方传感器(指南针、陀螺仪),支持跨学科创新实验。入门版开源创客学习
格物斯坦机械手臂的**价值在于打通“学习-创造-应用”闭环:教学场景:在K12阶段,学生通过搭建机械臂模型学习齿轮传动、杠杆原理等工程知识;高中生则开发“智能分拣系统”,结合OpenCV识别不同颜色与形状的物体。在高校科研中,上海大学与清华大学联合实验室利用该平台研究具身智能算法,例如优化双足机器人Tinker的关节控制策略。竞赛与社会议题:机械手臂成为解决真实问题的工具。如山区学生设计“智能浇花系统”,通过土壤湿度传感器触发机械臂灌溉指令;IRM大赛获奖项目“林火监测无人机”则整合红外传感器与机械臂,实现火源定位误差小于2米。产业赋能:平台的开源特性降低企业研发成本。传统需500万元投入的机械臂原型开发,现可单人5天内完成;优必选、宇树科技等企业基于其硬件架构开发出教育与工业场景产品,例如9.9万元级家用服务机器人已投入养老医疗领域。金属开源企业控制器GC-500支持多自由度系统,如螳螂机器人捕食动作的动态响应。
格物斯坦与上海大学、清华大学共建“清华-上大机器艺术与具身智能实验室”,由上海大学副教授叶林奇领衔,聚焦具身智能、机器人运动控制与仿真技术的前沿研究。该实验室开发的“格物”具身智能仿真平台成为标志性成果——通过集成通用强化学习框架与模型自动化适配技术,实现“一套代码适配百余款机器人”,新机型导入即可训练,无需重复编程,彻底颠覆传统研发流程。复旦大学亦深度参与技术验证,其自主研制的“光华一号”人形机器人依托该平台优化运动算法,将行走、抓取等功能的开发周期从3个月压缩至数天。此外,平台与UnityRLPlayground开源框架的融合,进一步降低了开发门槛,支持从仿真训练到实体部署的全流程自动化。
格物斯坦开源产品的控制系统与编程控制器:GC-500系列:支持多套编程软件(如GScratch、GLP),具备高速处理能力,可同时驱动多个舵机与传感器模块。GC-600系列:集成蓝牙4.0模块,兼容手机App遥控(如“你画我跑”、语音控制)及图形化编程。编程兼容性:图形化编程软件(GSP/GLP)支持拖拽积木指令块,一键转换为Arduino C语言,无缝衔接高阶开发。适配ROS(Robot Operating System)开发套件,提供传感器驱动、运动控制等底层库函数,支持Python/C++编写导航算法。格物斯坦 汇聚较好开源项目,加速技术传播。
开源系列产品的跨学科整合:结合3D打印课程,定制非标结构件(如轻量化仿生腿),优化机器人动态性能;“脑电波控制积木车”实验将专注力转化为前进指令,应用于特殊教育场景。高等教育与科研仿生机器人开发:高校团队基于“格物”仿真平台预演双足机器人Tinker的运动策略,再部署至实体硬件验证抗风压能力(模拟八级强风);通过调整关节参数(如腿长、偏转角度),探索四足机器人Go2的极限负重(50公斤)与跳跃稳定性。人工智能融合:基于ROS开发“多机协作流水线”,实现机器人群体任务分配与避障算法;集成YOLO目标检测模型,赋予机械臂动态抓取能力(如分拣快递包裹)。微型机床课程开源“数字匠人”设计图,培养智能制造技能。知识开源硬件
企业基于其硬件二次开发,将机械臂原型研发从500万压缩至5天。入门版开源创客学习
格物斯坦的开源战略延伸至教育公平与特殊群体赋能。其向山区学校捐赠金属开源套件,通过远程双师课堂指导乡村学生搭建“智能浇花系统”,利用土壤湿度传感器触发灌溉指令,缩小城乡科技教育差距;脑机接口积木模块则应用于特殊儿童康复训练,将脑电波信号转化为机器人运动指令,精细率达行业**水平。未来规划中,“格物”平台将进一步扩展至多机协作(2025年)与语言交互(2026年)领域,赋予机器人持续学习与场景自适应能力,推动家政、救援等场景的规模化落地。正如长江证券分析师倪蕤所言,这场由中国**的“机器人**”,正以成本暴降与技术开源为杠杆,撬动万亿级市场,让“**开发”从愿景走向现实。入门版开源创客学习