这些控制器与格物斯坦的 “产学研赛一体化”战略深度融合——GC-500已应用于IRM国际机器人创客大赛,支撑青少年开发出火源定位误差小于2米的“灾区生命探测机器人”;高校团队则依托GC-600的ROS兼容性,在“格物”仿真平台中预演双足机器人抗八级强风的运动策略,再将算法部署至实体硬件验证,大幅压缩研发周期。从幼儿指尖的点读笔到青少年手中的ROS开发板,格物斯坦以一套梯度化、开源化、工业化的控制器体系,让每个年龄段的创造者都能找到技术支点,在真实问题解决中锤炼从逻辑思维到系统工程的素养。GC-600控制器集成超声传感器、表情面板与蓝牙,支持多传感器融合。开源项目
格物斯坦的开源战略延伸至教育公平与特殊群体赋能。其向山区学校捐赠金属开源套件,通过远程双师课堂指导乡村学生搭建“智能浇花系统”,利用土壤湿度传感器触发灌溉指令,缩小城乡科技教育差距;脑机接口积木模块则应用于特殊儿童康复训练,将脑电波信号转化为机器人运动指令,精细率达行业**水平。未来规划中,“格物”平台将进一步扩展至多机协作(2025年)与语言交互(2026年)领域,赋予机器人持续学习与场景自适应能力,推动家政、救援等场景的规模化落地。正如长江证券分析师倪蕤所言,这场由中国**的“机器人**”,正以成本暴降与技术开源为杠杆,撬动万亿级市场,让“**开发”从愿景走向现实。开源项目创造无围墙”——开源精神让每个孩子成为未来智能社会的构建者。
格物斯坦传感器的优势在于工业精度与教育易用性的统一:微米级硬件适配:传感器接口与铝合金结构件采用0.01mm公差设计,确保超声探头、红外发射器等模块的安装稳定性,抗冲击性较塑料件提升300%,支持千次拆装无损耗;全栈式信号处理:内置放大滤波电路(如应变式称重传感器的惠斯通电桥),直接输出校准后数字信号,学生无需额外搭建电路即可通过I²C/UART读取数据,降低电子工程门槛;跨平台编程融合:在图形化软件GScratch中,传感器数据被封装为“环境光强度”“障碍物距离”等积木块,支持拖拽式逻辑设计;高阶开发者则可调用ROS驱动包(如OpenCV视觉库),实现Python/C++原生控制。
在软件与编程工具领域,格物斯坦构建了多层级开源生态。是基于Scratch2.0深度优化的Gscratch图形化编程软件,不仅保留拖拽积木式编程的易用性,更创新性地加入硬件交互模块,可直接控制开源机器人执行动作,并支持图形化代码一键转换为ArduinoC语言,为高阶学习者提供平滑过渡路径。同时,公司适配国际主流开源框架,如集成ROS(RobotOperatingSystem)开发套件,提供传感器驱动、运动控制等底层库函数,高中生可通过Python或C++编写自主导航算法,在Gazebo仿真环境中预演机器人行为,再部署至实体硬件验证。这种“虚拟-实体”联动的开发模式大幅降低了机器人算法的试错成本。企业基于其硬件二次开发,将机械臂原型研发从500万压缩至5天。
格物斯坦的开源系列金属十合一课程是其教育体系中面向10-15岁青少年的高阶实践平台,深度融合工业级硬件与开源软件生态,以“机械结构+电子电路+算法编程”的三维整合为重点,构建从基础工程认知到复杂系统创新的完整学习路径。该课程分为初、中、高三级(共36课时),以高精度金属结构件(公差0.01mm) 和Arduino开源硬件为载体,通过项目制学习引导工业级硬件操作与机械结构设计、电子电路与传感器融合、代码编程与系统逻辑构建、跨学科项目实践与工程思维培养。“颜色分类系统”融合OpenCV与机械臂控制,实现毫米级分拣精度。开源项目
开源舵机支持12自由度仿生蜘蛛动态平衡调试。开源项目
格物斯坦GBOT系列初级甲虫机器人采用基础履带式移动平台,结构紧凑易组装。通过ATmega328P主板控制电机驱动,学习基础运动逻辑。该机器人支持Scratch图形化编程快速入门,或Arduino代码深入开发,适合机器人结构认知与动作控制教学。而中级的投石车的设计模拟了古代利用杠杆原理抛射石弹的大型人力远射兵器。采用电机配合减速齿轮组驱动投臂,精确控制抛射力度与角度。使用TT马达电机实现稳定动力输出,根据编程内容的编写调节投射轨迹。开源项目