格物斯坦的物理量传感器以动态感知为重点,包括:力学感知模块:如荷重传感器、应变加速度传感器,可测量0.1-50kg范围内的压力变化,精度达满量程±0.05%,用于机械臂抓取力控制或摩天轮承重实验;空间定位单元:超声测距传感器、巡线传感器,构成机器人避障与路径规划的基础;运动状态器件:陀螺仪与加速度计融合模块,支撑仿生机器人的动态平衡控制。环境量传感器则聚焦跨学科场景融合:光敏传感器基于光导效应,支持环境光强分级(如0-1000lux分档),应用于智能灯控系统与植物生长监测;温湿度复合传感器采用陶瓷湿敏电容与扩散硅技术,温度范围-30℃~70℃,湿度检测精度±3%,用于农业温室自动调控项目;气敏组件如MQN型气敏电阻,可检测CO₂、甲烷等气体浓度,结合TiO₂氧浓度传感器,成为环保监测机器人的重点。生物信号传感器体现技术普惠:脑电波模块通过专注力阈值触发指令,将α波强度转化为机器人速度参数,应用于特殊儿童康复训练;表情面板集成LED阵列与触摸感应,支持情绪化人机交互。几乎所有开源软件都是自由软件,共享是它的基因。推动开源小车
格物斯坦开源系列的控制器是其教育机器人生态的重要中枢,通过分层级、多模态的设计策略,精细适配3-16岁不同年龄段学习者的认知发展需求,同时以工业级性能与教育普惠性为**优势,构建了从启蒙交互到高阶开发的完整技术链条。GC-500/GC-600高阶控制器针对13-16岁青少年,不仅集成蓝牙4.0模块实现手机App遥控(如“你画我跑”轨迹生成、语音指令交互),更深度兼容ROS(Robot Operating System)开发套件,提供传感器驱动库与运动控制API,支持Python/C++编写自主导航算法,可直接部署至仿生机器人实体验证。推动开源小车小学生刷卡编程(如GC-100J),输入“电机卡+时间卡”控制风扇启停。
格物斯坦开源金属结构件的工艺优势则体现为三方面:教育适配性:快速拆装结构结合色彩鲜明的表面氧化涂层,使低龄学生可徒手完成复杂机器人搭建(如仿生蛇、三轮全向轮小车),无需专业工具即能实践机械传动原理;工业级耐用与扩展:铝合金材质抗冲击性强,支持反复拆装而不变形,同时预留标准化接口(如I²C、UART),兼容舵机、温湿度传感器等300余种电子模块,学生可自由设计“智能浇花系统”或“脑电波控制积木车”等跨学科项目;开源生态整合:结构件与Scratch/Arduino编程平台深度兼容,例如主控板GMega基于ATmega2560芯片开发,支持图形化积木编程一键转译C代码,学生从机械搭建到算法部署形成完整创造闭环。
格物斯坦的金属开源机器人系列(如铁达摩、GBOT系列)采用**度铝合金结构件,兼容Scratch、Arduino及ROS(RobotOperatingSystem)生态,硬件精度达0.01毫米,软件层面支持图形化编程至C++的无缝过渡。这一开放性设计吸引全球开发者加入OpenLoong开源社区,通过每周线下分享会与在线协作,共同优化机器人算法与硬件设计。产业转化方面,平台***降低研发成本:传统需500万元投入、数十人团队的机器人原型开发,如今单人5天内即可完成,成本骤降90%。典型案例包括:双足机器人Tinker:实现抗扰行走与动态平衡,模拟八级强风环境仍保持稳定;四足机器人Go2:完成50公斤负重跳跃测试,运动性能经仿真预演后精细迁移至实体;智能分拣系统:高校团队结合OpenCV视觉识别与机械臂控制积木模块,实现物流场景高效分拣。 中学生开发仿生蜘蛛,协调12自由度舵机运动并优化动态平衡算法。
开源这些控制器的优势在于教育适配性与技术开放性的统一:认知分层设计:从点读笔的物理交互到ROS的代码开发,形成“无屏→实体卡→图形化→代码化”的渐进路径,匹配儿童思维从具象到抽象的发展规律;软硬件深度协同:以GC-500为例,其内置的GScratch软件基于Scratch 2.0深度优化,新增硬件交互模块脚本,学生拖拽“超声避障”“舵机角度”等积木即可控制机器人行为,同时支持图形代码一键转译为Arduino C语言,实现从趣味编程到工程开发的无缝跃迁;工业级扩展能力:GC-600控制器提供I²C、UART、GPIO等标准接口,可驱动多自由度仿生关节(如12自由度仿生犬),并兼容第三方传感器与执行器,使中学生能开发“林火监测无人机”“脑电波控制机械臂”等复杂项目,将创客想法快速转化为工业级原型;跨平台生态整合:控制器适配格物斯坦的六面拼搭金属结构件(公差精度0.01mm),结合开源社区共享的3D模型与代码库,学生可复用“全自动象棋机器人”等成熟方案,聚焦创新优化而非重复造轮,真正践行“创造无围墙”的理念。金属十合一课程分初、中、高三级,36课时贯通机械、电子与代码编程。高级编程开源系列产品
“颜色分类系统”融合OpenCV与机械臂控制,实现毫米级分拣精度。推动开源小车
这些控制器与格物斯坦的 “产学研赛一体化”战略深度融合——GC-500已应用于IRM国际机器人创客大赛,支撑青少年开发出火源定位误差小于2米的“灾区生命探测机器人”;高校团队则依托GC-600的ROS兼容性,在“格物”仿真平台中预演双足机器人抗八级强风的运动策略,再将算法部署至实体硬件验证,大幅压缩研发周期。从幼儿指尖的点读笔到青少年手中的ROS开发板,格物斯坦以一套梯度化、开源化、工业化的控制器体系,让每个年龄段的创造者都能找到技术支点,在真实问题解决中锤炼从逻辑思维到系统工程的素养。推动开源小车