大数据和人工智能技术极大地推动辅助阅读智慧化。如表5所示,一方面,进一步优化移动阅读、数字阅读的外部语义增强环境。除了提供划线、高亮显示、翻译、对比阅读等功能以辅助关键信息的甄别与标识,还强化语料、引文收集、标签、手绘等数字笔记和数字注释功能,增强用户描述和记录文本大意的体验。另一方面,对文献内容的再生产或再创作,提高阅读效率,降低认知负荷。在海量数据中“学习”并“理解”内容,对某一主题的相关文献进行自动综述,提炼文献的**内容,AI生成解读视频。同时,基于语义关联关系,提供与文献相关的数据、代码、项目、视频讲解等服务。在阅读理解过程中,以提问的方式要求GPT类平台自动提炼相关内容,自动实现知识抽取和关系揭示。表6列举了部分学术平台的辅助阅读服务内容及服务形式。当前的辅助阅读服务适用于撰写文献综述的主题文献阅读,也适用于学术检索任务和积累任务,但仍需要配合人工精读的方式学习特定的方法和理论知识点。数字图书馆的用户可以通过检索一些关键词,就可以获取大量的相关信息。参考智慧导读数据分析
智慧导读面向数智技术赋能多源异构数据资源有效融合、数智业务实现智慧数据高效流转的需求,遵循业务流程化、业务智能化思想,分数智技术赋能模块、智慧数据流转模块构建业务层。其中,数智技术赋能模块迭代以大数据、人工智能为**的数智技术体系,按照数智服务的技术需要以技术簇为基座划分泛在感知、数据管理、情报服务技术簇,深度赋能以智慧数据流以及融合智慧数据的数智服务,提供聚焦图书馆生态协同应用场景的数据资源价值挖掘、流通转化、创新服务等能力。天津智慧导读业务流程科技文献用户的知识需求不断细化和要求不断提高,传统科技文献资源组织方式难以满足要求。
随着信息技术的飞速发展,高校图书馆作为知识服务的重要平台,传统服务模式已无法满足用户对高效、精细信息的需求,服务模式的升级与转型已成为必然趋势。以ChatGPT的人工智能生成内容(ArtificialIntelligenceGeneratedContent,AIGC)的出现,为高校图书馆的服务创新开辟了全新的路径。高校图书馆服务模式经历了从文献服务到信息服务,再到知识服务,发展到智慧服务的演变。智慧服务作为知识服务的深化与扩展,理念在于激发用户将知识转化为智慧的能力,借助大数据分析、人工智能算法、区块链技术、第五代移动通信(5G)以及虚拟现实(VR)等先进的现代信息技术,通过数字化、网络化及智能化等手段,对图书馆资源进行数字化管理,为读者提供个性化和智能化的服务,促进图书馆与读者之间的深层次互动交流。
面向数智环境下图书馆数智服务的全要素精细感知、复杂资源有效融合、多服务高效协同等需求,结合IT规划参考模型,系统分析智慧图书馆的前沿研究与实践,充分融合智慧数据的演进范式及迭代模式,以数据治理体系为基础、数智技术体系为赋能智慧数据流通转化过程及图书馆数智服务流程,通过层次化、模块化、组件化的方式,分人机交互层、数智服务层、业务层、数据存储层、标准规范层、基础设施层构建融合智慧数据的图书馆数智服务平台。智慧导读可以帮助读者更好地掌握阅读技巧。
数据资源建设方面。学术平台底层资源的数据化程度决定平台的智慧化程度[45]。一方面,注重加强用户学术阅读行为数据的采集与挖掘,包括阅读内容偏好、阅读时长、阅读场景、阅读情绪、阅读心理、社交数据等,添加基本标签、偏好标签、会话标签、情景标签、互动标签构建用户实时动态画像模型。另一方面,侧重开发学术资源数据,包括细粒度内容资源、个性化阅读资源库、科研专题资料库、课程文献中心等,并做好与用户阅读行为数据的关联建设。例如,面向教育数字化转型的需求,山东大学图书馆构建学术数据服务平台,打造学者—机构—成果关联的数据资源[46]。以这些数据为基础,AIGC技术嵌入后将会实现多模态数据关系映射、转换及数据感知与挖掘分析。尤其是网络技术、数字存储和传输技术等的普及,数字图书馆应运而生。上海怎样智慧导读
所谓智慧,包括两个层面:一是人的上升到思维方法意义上的理性的狡黠,它是人认识事物的特殊眼光和视角。参考智慧导读数据分析
智慧导读调用原生数据后依次通过模态识别、特征提取、融合计算三阶段的数据融合,实现多模态原生数据向聚焦特定服务目标的融合数据转化,经实体、事件、关系三种维度的信息抽取,实现融合数据向结构化综合信息有序转化,进而存储各类中间数据于相应数据库;调用中间数据后依次通过目标设定、方法模型及工具综合应用、结果评估三阶段的数据分析,实现数据价值深度挖掘以获取直接作用于图书馆数智服务的多维主题标签及深度数据,经知识融合、知识评估、知识推理三阶段的知识发现,实现多维主题标签及深度数据向满足任务智能决策需要的通用知识及领域知识转化,进而存储各类智慧数据于相应数据库。参考智慧导读数据分析