个性化阅读推荐系统设计的关键为内容资源管理与标签化。智慧图书馆需把内容资源进行数字化管理,并给每本书籍、期刊、文章等都贴上标签,这些标签包括书籍的主题、作者、出版时间、阅读难易程度等,从而对资源进行有效的分类及标签化处理。当用户请求推荐时,个性化阅读推荐系统可迅速筛选出契合其需求的书籍或资源。同时,智慧图书馆还能按照读者的反馈以及借阅频率来调整资源标签,使推荐精细水平提升。在设计智慧图书馆的个性化阅读推荐系统时,推荐算法的选择是关键。统计显示,个性化阅读推荐系统可以将用户满意度提高至少25%,同时增加用户访问图书馆资源的频率。因此,选择合适的推荐算法对提升图书馆的服务质量和效率具有***影响。选择推荐算法时需要考虑多种因素,包括用户行为数据的类型和规模、系统的性能要求以及不同类型资源的特性。智慧图书馆通常处理大量的用户行为数据,从数百万到数十亿不等,每天生成数百万事件,这要求推荐系统具备强大的计算能力,以高效处理和分析大规模数据。智慧导读的作用,在于提供智慧养分,滋养精神成长。图书馆智慧导读发现
信息技术是阅读服务创新的**驱动力,AIGC技术势必将驱动阅读服务的变革,促进智慧图书馆等学术平台的服务创新。学术平台是学术用户明晰并满足阅读需求的重要支撑。目前,一些学术用户已开始利用新型学术阅读平台寻求和阅读内容,这将会对用户学术积累方式产生影响[3]。国内外新型的学术阅读平台包括Scispace、SemanticScholar、YewnoDiscover、ConnectedPapers、PaperDigest、中国科学院AI引擎、AMiner、Readpaper等。相较于传统学术阅读平台,它们具有典型的智能化与智慧化阅读功能的特征。但存在一些用户对学术平台新功能与新服务认识不足、使用技能缺乏,学术阅读智慧化需求得不到满足[4],无法借助服务辅助解决学术阅读全过程中所遇到的信息过载、交流不畅及阅读拖延等问题。四川智慧导读服务费个性化选择的界面信息资源搜集与表达方式,各种服务可以汇集到一个平台上。
在强大的计算能力和海量数据支撑下,当前AIGC技术的内容创作效率已经超越人类。例如,在传统的公共图书馆绘画活动中,参与者创作一个复杂作品往往需要数小时,而通过使用绘图应用,参与者*需输入提示文本,不到一分钟便能生成一张精美的作品草图。展望未来,在AIGC技术的辅助下,内容创作相关行业的生产效率必将得到更加的提升。尽管AIGC技术带来了诸多便利,但公共图书馆从业人员也应认识到在其研发和应用过程中面临的诸多挑战。。
智慧导读依赖于大数据和机器学习技术,它通过对用户阅读行为、兴趣偏好、历史记录等数据进行深度分析和挖掘,为用户推荐个性化的阅读内容。这种方式实现了对用户数据的自动化处理和高效利用。而传统的书籍推荐方式往往基于编辑或销售人员的经验判断、**或**榜单等,这种方式虽然有其合理性,但可能缺乏足够的个性化和精细性。智慧导读通过机器学习和算法优化,能够持续学习和适应用户的阅读行为变化,从而提供越来越精细的推荐。而传统的推荐方式可能因为主观因素或信息更新的滞后,其推荐精细度可能受到限制。推荐范围和实时性:智慧导读可以涵盖海量的书籍资源,并根据实时数据更新推荐内容,使得用户能够接触到更多元、更及时的阅读选择。传统的推荐方式则可能受限于推荐源的数量和更新速度,无法提供如此***和及时的推荐。智慧导读可以帮助读者更好地掌握阅读技巧。
在智慧阅读三元协同系统结构中,信息通信技术、数字阅读平台和读者是智慧阅读的三要素。数字阅读平台在信息通信技术的基础上为读者提供阅读内容和服务,读者在注册和使用数字阅读工具的过程中留下个人的、人机交互的、社交互动的信息与行为记录,这些信息与行为记录被数字阅读平台收集、整理、加工,再反馈给信息通信技术的操作者。信息通信技术的操作者在平台的价值和规则框架下,通过人机协同的方式对读者信息与行为记录进行加工,在平台的监制下提供产品和服务。作为一种理想状态的智慧阅读,其应然状态是数字的(指处理过程是数字的,唯有数字化才可计算,才能提供快速及时反应;**终产品既可以是虚拟的,又可以是实体的)、个性的、情境的、可持续的、***的、对个体和全人类具有福祉效应的。图书馆的数字文献知识服务通常是由图书馆采购数字文献资源,读者分别各自访问一个个的文献数据库。品质智慧导读服务费
智慧阅读服务系统与平台方面的研究主要包括 出版与阅读服务系统、图书馆阅读服务系统等。图书馆智慧导读发现
智慧阅读服务内容方面的研究覆盖读物供给智慧化、辅助阅读智慧化和阅读推广智慧化等主题。有关读物供给智慧化的研究包括移动读物供给[9]、虚拟现实读物供给[10-11]及个性化阅读推荐[12-13]等方面,读物涉及文本、视频、音频、图像、数据等多种形式,如视听阅读内容[14]、有声读物[15]、历史人物数据[16]、在线可视化数据[17]等。辅助阅读智慧化研究方面,K.LO等探讨“人工智能和人机交互的***进展能否为智能、交互式和可访问的阅读界面提供动力”[18]。基于眼动追踪和大语言模型技术的智能AI阅读助手SARA通过实时提供个性化帮助来增强阅读体验[19]。同时,对支持阅读过程的新技术平台需求正在增长[18]。有关阅读推广智慧化的研究包含服务流程[20]、模式框架及实践[21]等方面。另外,少数学者调查高校图书馆智能服务水平并分析阻碍因素[22]。图书馆智慧导读发现