您好,欢迎访问

商机详情 -

炉前AOI

来源: 发布时间:2025年06月11日

随着新能源汽车的快速发展,新能源电池的质量和安全性备受关注。AOI在新能源电池制造过程中有着重要的应用。在电池电极的生产环节,AOI可以检测电极表面的涂层厚度是否均匀、有无气泡或划痕等缺陷。这些缺陷可能会影响电池的性能和寿命。在电池组装过程中,AOI可以检测电池模组的焊接质量、极耳的连接是否牢固等。此外,AOI还可以对电池的外观进行检测,确保电池外壳无破损、标识清晰。通过使用AOI技术,电池制造商能够提高产品质量,降低次品率,保障新能源电池的安全性和可靠性。AOI独特链条优化光源角度,结合数百万样本训练,场景适应广、误报少、检出率高。炉前AOI

炉前AOI,AOI

AOI 的字符识别功能在追溯与品质管理中发挥重要作用,爱为视 SM510 集成先进的 OCR(光学字符识别)算法,可识别 PCBA 上的元件丝印、批次号、生产日期等字符信息。通过对比预设的标准字符库,系统能快速检测字符模糊、缺失、错误等问题,例如识别电阻上的阻值标识是否与设计文件一致,或电容上的极性标记是否正确。这些信息不用于缺陷判定,还可与 SPC 系统结合,分析字符印刷工艺的稳定性,为上游供应商管理提供数据依据。AOI 智能判定通过深度神经网络分析图像,减少人工干预,提升检测一致性与客观性。上海新一代AOI配件AOI光束引导指示不良位置,减少盲目排查,提高维修针对性与问题解决效率。

炉前AOI,AOI

AOI的技术原理基于光学成像和图像处理。首先,光源会以特定的角度和强度照射到被检测物体表面,物体反射或透射的光线通过光学镜头聚焦成像在图像传感器上。图像传感器将光信号转换为电信号,并进一步转化为数字图像数据。随后,图像处理算法开始发挥作用,这些算法会对图像进行灰度化、滤波、边缘检测、特征提取等一系列操作。通过与预先设定的标准图像或特征参数进行对比,从而判断被检测物体是否存在缺陷以及缺陷的类型和位置。例如,在检测一个金属零件的表面划痕时,算法会根据划痕处与正常表面的灰度差异、边缘特征等信息,准确识别出划痕并测量其长度和宽度。

AOI 的低误判率特性降低人工复判成本,爱为视 SM510 通过 “多级验证算法” 减少误报,即对疑似缺陷先由卷积神经网络初筛,再通过支持向量机(SVM)进行特征二次校验,结合元件工艺规则(如焊盘尺寸、引脚间距)进行逻辑判断。以 “锡珠” 检测为例,传统 AOI 可能将焊盘周围的反光点误判为缺陷,而该设备通过多算法融合,可根据锡珠的形状、灰度值及与焊盘的距离等多维特征识别,误判率低于 0.5%,使人工复判工作量减少 80% 以上,尤其适合对检测精度要求极高的医疗设备 PCBA 生产。AOI电动轨道适配现有产线,减少改造难度与成本,快速融入自动化生产流程。

炉前AOI,AOI

AOI 的检测效率与产线节拍协同能力是大规模生产的需求,爱为视 SM510 的检测速度达 0.22 秒 / FOV,配合高速传输轨道,可实现每分钟处理 30 片以上 PCBA,完全匹配高速 SMT 产线的节拍要求。以某手机主板生产线为例,单台设备每小时可完成 1800 片 PCBA 的全检,相比人工目检效率提升 20 倍以上,且检测一致性优于人工。这种高效检测能力使企业能够在不增加产线长度的前提下,实现产能的大幅提升,尤其适合消费电子旺季的大规模生产场景。AOI 光束引导指示不良位置,减少盲目排查,提高维修针对性与问题解决效率。AOI具备AI极速编程,新机种程序5-20分钟完成,操作极简,打开系统自动建模识别。江西AOI测试

AOI字符识别功能准确识别各类字符,确保元件标识正确,避免不良品流入下工序。炉前AOI

AOI 的产线集成灵活性满足智能化工厂布局需求,爱为视 SM510 支持进出方向可调(左进右出或右进左出),可与贴片机、回流焊炉、SPI(焊膏检测)设备等无缝串联,形成全自动检测闭环。例如,在一条典型的 SMT 产线中,AOI 可部署于回流焊炉后,实时接收 SPI 设备的前序数据,结合焊后检测结果进行工艺对比分析,为优化焊膏印刷与回流焊温度曲线提供依据。这种模块化设计使设备可根据工厂现有产线布局灵活调整位置,限度减少产线改造工作量。炉前AOI

标签: AOI