随着新能源汽车的快速发展,新能源电池的质量和安全性备受关注。AOI在新能源电池制造过程中有着重要的应用。在电池电极的生产环节,AOI可以检测电极表面的涂层厚度是否均匀、有无气泡或划痕等缺陷。这些缺陷可能会影响电池的性能和寿命。在电池组装过程中,AOI可以检测电池模组的焊接质量、极耳的连接是否牢固等。此外,AOI还可以对电池的外观进行检测,确保电池外壳无破损、标识清晰。通过使用AOI技术,电池制造商能够提高产品质量,降低次品率,保障新能源电池的安全性和可靠性。AOI具条码识别功能,支持一维/二维码,数据可追溯,按条码、机型、时间等维度对接MES。parmi aoi
AOI 的硬件性能直接决定长期稳定运行能力,爱为视 SM510 搭载 Intel i5 12 代 CPU 与 NVIDIA 12G GPU,64G 内存和 1T 固态硬盘 + 8T 机械硬盘的存储配置,确保大数据量下的快速处理与存储。在连续 24 小时运行的自动化产线中,设备可实时处理每秒数十张的高清图像,同时存储数年的检测数据供追溯分析。例如,汽车电子厂商需保存 PCBA 检测记录至少 5 年,该设备的大容量存储与快速检索功能可满足合规要求,避免因数据存储不足导致的历史记录丢失。AOI 智能判定通过深度神经网络分析图像,减少人工干预,提升检测一致性与客观性。AI双面自动光学检测仪作为一种先进的检测手段,AOI 正在越来越多的行业中崭露头角,为产品质量保驾护航,推动行业发展。
半导体制造是一个极其精密的过程,对产品质量的要求近乎苛刻,AOI在其中起着关键的质量把控作用。在芯片制造的光刻、蚀刻、封装等多个环节,都离不开AOI的检测。在光刻环节,AOI可以检测光刻图案的精度,确保芯片上的电路布局符合设计要求。蚀刻后,AOI能够检测芯片表面的蚀刻质量,发现是否存在残留的光刻胶或蚀刻过度、不足等问题。在封装阶段,AOI则用于检测芯片引脚的焊接质量、封装体是否存在裂缝等。由于半导体芯片的尺寸越来越小,集成度越来越高,哪怕是微小的缺陷都可能导致芯片失效,因此AOI的高精度检测能力对于半导体行业的发展至关重要。
在塑料注塑行业,AOI主要用于检测注塑产品的外观缺陷和尺寸精度。注塑过程中,由于模具磨损、注塑参数不稳定等原因,产品可能会出现飞边、气泡、变形等缺陷。AOI通过对注塑产品的图像采集和分析,能够快速准确地识别这些缺陷。同时,AOI还可以测量产品的尺寸,与设计尺寸进行对比,判断产品是否符合公差要求。对于一些高精度的塑料注塑产品,如手机外壳、汽车内饰件等,AOI的检测精度和速度能够满足生产需求,帮助企业提高产品质量,降低废品率。企业引入 AOI,有效降低人工检测误差,提高生产流程稳定性。
AOI 的光源系统是图像质量的保障,爱为视 SM510 采用 RGBW 四色环形 LED 光源,通过控制红、绿、蓝、白四色光的亮度与角度,可针对不同元件材质与缺陷类型优化成像效果。例如,检测金属焊点时,红色光源可增强表面反光对比度,清晰显示连锡或少锡缺陷;检测黑色元件丝印时,白色光源可提升字符清晰度,便于 OCR 识别。这种多色光源组合使设备能够适应镀金、镀镍、涂覆阻焊层等多种 PCBA 表面处理工艺,确保检测结果的可靠性。AOI 智能判定通过深度神经网络分析图像,减少人工干预,提升检测一致性与客观性。AOI多维度报表为管理提供数据支撑,助力科学决策,优化生产流程与资源配置。广州专业AOI测试
AOI极速建模缩短新机种上线时间,自动流程高效,支持企业快速切换生产任务。parmi aoi
AOI 的元件库管理功能提升编程效率,爱为视 SM510 内置丰富的元件库,涵盖电阻、电容、IC、连接器等数千种标准元件,每个元件预存典型封装的检测规则与标准图像。工程师在新建检测模板时,可直接从元件库中调用对应型号,系统自动匹配检测参数(如引脚间距公差、焊盘尺寸阈值),无需重复设置。对于非标元件,可通过 “元件学习” 功能快速创建新条目,将其外观特征、检测规则加入库中,形成企业专属的元件数据库,便于后续机型快速复用,累计使用后可使平均编程时间再缩短 30% 以上。parmi aoi