智慧阅读作为一个学术概念,尚未形成定论。现有研究大多由数字时代阅读主体的特征和需求出发,延伸到生产工具和生产过程的智慧化。有学者认为智慧阅读关联读者多维、动态、非线性、差异化的阅读需求,其实现需要借助大数据、人工智能、机器学习、语义出版等工具技术,以及结构化组织、细粒度加工、深度关联、要素增补等数据流程[4]。智慧阅读的初步应用主要在图书馆,有学者认为图书馆的智慧化程度取决于其借助大数据提供个性化服务的能力[5],有学者关注通过数据分析、数据挖掘、情景感知来实现图书馆的智慧推荐[6];有学者认为智慧阅读的实现需要结合读者信息(浏览信息、检索信息、收藏信息、订阅信息)和资源使用记录(借阅记录、阅读记录、文献订阅、文献评价)进行资源的智慧推荐[7]。有学者指出机器算法从内容、情境、服务等三方面增强移动用户的智慧体验效果[8],有学者将智慧阅读关联阅读情绪和感受,认为数字出版叙事朝着动态、多元且充满创意的叙事逻辑发展,使得读者在认知和情感上更具沉浸感[9]。智慧导读是一种基于人工智能和大数据技术的阅读辅助工具,旨在提供个性化、智能化的阅读推荐和导读服务。河南智慧导读服务费
基本原则及立体复合、开放共享等数据资源建设原则,分原生数据存储模块、中间数据存储模块、智慧数据存储模块构建数据存储层。其中,原生数据存储模块分别构建业务场景数据库以存储用户数据、情境数据、态势数据;构建馆藏资源库以存储文本、音频、视频、图像等多模态数据资源;构建服务模型库以存储标准化、可重用的功能模型及服务方案;构建数智技术库以存储技术方案、应用模型、智能工具;构建设备状态数据库及日志数据库以存储架构运维相关软硬件数据;构建元数据库以存储业务元数据、技术元数据、操作元数据。中间数据存储模块分别构建融合数据库以存储模态间关联的融合数据;构建综合信息库以存储由实体、事件、关系组合表示的结构化信息。智慧数据存储模块分别构建标签库以存储涉及业务场景、馆藏资源、数智技术等主题的多维度标签;构建深度数据库存储以图书馆数智服务为主题划分、充分发掘数据潜在价值、很大程度发挥智慧作用的深度数据;构建通用知识库以存储多行业领域适用的规则、事实、知识图谱;构建领域知识库以存储服务特定业务场景的集成化知识。运营智慧导读常见问题《智慧导读》是上海半坡网络技术有限公司研制开发的一种主动介入的实时文献内容知识发现服务产品。
智慧导读调用原生数据后依次通过模态识别、特征提取、融合计算三阶段的数据融合,实现多模态原生数据向聚焦特定服务目标的融合数据转化,经实体、事件、关系三种维度的信息抽取,实现融合数据向结构化综合信息有序转化,进而存储各类中间数据于相应数据库;调用中间数据后依次通过目标设定、方法模型及工具综合应用、结果评估三阶段的数据分析,实现数据价值深度挖掘以获取直接作用于图书馆数智服务的多维主题标签及深度数据,经知识融合、知识评估、知识推理三阶段的知识发现,实现多维主题标签及深度数据向满足任务智能决策需要的通用知识及领域知识转化,进而存储各类智慧数据于相应数据库。
数据资源建设方面。学术平台底层资源的数据化程度决定平台的智慧化程度[45]。一方面,注重加强用户学术阅读行为数据的采集与挖掘,包括阅读内容偏好、阅读时长、阅读场景、阅读情绪、阅读心理、社交数据等,添加基本标签、偏好标签、会话标签、情景标签、互动标签构建用户实时动态画像模型。另一方面,侧重开发学术资源数据,包括细粒度内容资源、个性化阅读资源库、科研专题资料库、课程文献中心等,并做好与用户阅读行为数据的关联建设。例如,面向教育数字化转型的需求,山东大学图书馆构建学术数据服务平台,打造学者—机构—成果关联的数据资源[46]。以这些数据为基础,AIGC技术嵌入后将会实现多模态数据关系映射、转换及数据感知与挖掘分析。将更多的学科专业知识融汇起来,对潜在的相关知识进行有效整合,切实提升图书馆馆藏资源价值。
目前智慧阅读服务的研究成果主要集中在服务系统、服务内容、用户需求与行为等方面。面对新一代人工智能技术的不断迭代,阅读服务面临前所未有的机遇与挑战,当前学术阅读智慧化服务存在哪些问题?如何依托AIGC技术赋能实现服务优化?这些问题亟需得到探究与明晰,但目前学界尚缺少聚焦学术阅读智慧化服务领域的跟踪研究。因此,本文拟利用内容分析法剖析目前国内外典型学术平台的智慧阅读服务现状,总结存在问题,并探索AIGC技术赋能改进图书馆学术阅读智慧化服务的路径。上海半坡是专门为图书馆提供文献知识服务的公司。运营智慧导读业务流程
为读者提供更加个性化的阅读推荐,帮助读者发现感兴趣的内容、拓宽阅读视野、提高阅读效果。河南智慧导读服务费
个性化阅读推荐系统设计的关键为内容资源管理与标签化。智慧图书馆需把内容资源进行数字化管理,并给每本书籍、期刊、文章等都贴上标签,这些标签包括书籍的主题、作者、出版时间、阅读难易程度等,从而对资源进行有效的分类及标签化处理。当用户请求推荐时,个性化阅读推荐系统可迅速筛选出契合其需求的书籍或资源。同时,智慧图书馆还能按照读者的反馈以及借阅频率来调整资源标签,使推荐精细水平提升。在设计智慧图书馆的个性化阅读推荐系统时,推荐算法的选择是关键。统计显示,个性化阅读推荐系统可以将用户满意度提高至少25%,同时增加用户访问图书馆资源的频率。因此,选择合适的推荐算法对提升图书馆的服务质量和效率具有***影响。选择推荐算法时需要考虑多种因素,包括用户行为数据的类型和规模、系统的性能要求以及不同类型资源的特性。智慧图书馆通常处理大量的用户行为数据,从数百万到数十亿不等,每天生成数百万事件,这要求推荐系统具备强大的计算能力,以高效处理和分析大规模数据。河南智慧导读服务费