应用案例某主机厂应用了漆面缺陷检测系统,系统安装在1条面漆存储线上,可同时满足2条精修线车辆的漆面缺陷检测,设计产能40JPH,可检测的比较大车身尺寸为5000mm×2000mm×1800mm,检测速度6m/min。系统采用红色LED灯带作为光源,主检测站配备39个500万像素高清相机,尾门检测站配备9个500万像素高清相机,每分钟可采集近5万张的车身照片,通过光纤传输给图像处理计算机,采用传统2D图像算法进行缺陷识别。安装缺陷检测系统之前,每条精修线配备8名员工,对漆面缺陷进行人工检查和打磨抛光。通过加装缺陷检测系统,每条精修线员工由8人减少至6人,这6名员工重新分工,根据大屏幕显示的缺陷检测结果,只负责打磨、抛光操作,1套检测系统可节省人工8人(2人/线×2线×2班)。高精度汽车面漆检测仪,让细微瑕疵无处遁形。漳州非隧道式汽车面漆检测设备哪家好
目前汽车车身的漆面缺陷检测主要是依赖传统的人工目视检查,因检测效率低、检测标准不够客观,并且容易受人工分心、疲劳等主观因素的影响,越来越难以满足工艺过程的测量和检测要求。因此,对自动化缺陷检测装置的需求日益增强,这种自动化缺陷检测装置不仅可以严格地管控产品质量,还能及时对产品缺陷进行工艺溯源,为工艺品质改善提供数据支持。车身漆面的缺陷种类繁多,不同的生产厂家对缺陷的定义存在差异。从缺陷的光学成像形式可以归类为:色差类缺陷、脏污类缺陷、纹理类缺陷、划伤碰伤类缺陷、凹凸类缺陷。龙岩高精度汽车面漆检测设备品牌实时检测汽车面漆的光泽度,确保涂层效果符合标准。
本发明涉及车漆喷膜技术领域,尤其涉及一种用于车漆保护的水性可撕膜溶胶树脂及其制备方法和应用。背景技术:近年来,得益于经济高速发展和道路建设的不断完善,中国过去十年的汽车购买量持续增长,但随着汽车保有量增加,汽车使用过程中存在的剐蹭、原车漆磨损老化问题为广大车主忧虑。目前养护市场使用的传统喷漆,全车贴膜等方式无法完全解决上述痛点,反之存在侵入、腐蚀原车漆的副作用。传统全车贴膜存在的脱胶、紫外线照射下产生的皲裂以及更换时的残留会给后续处理产生很大困扰。申请号为cn公开了一种水性保护喷膜,其由组分a和组分b组成,组分a和组分b的重量比为(3~8)∶12;所述组分a中各物质在该组分中的重量份数为:30~40份脂肪族聚酯型聚氨酯、60~70份水;所述组分b中各物质在该组分中的重量份数为:75~90份改性水性聚氨酯树脂、助剂~5份、水5~15份;所述改性水性聚氨酯为乙烯基含硫化合物接枝改性。虽然该保护膜能够从汽车表面撕下,但其韧性和硬度都较低。技术实现要素:针对现有技术的不足,本发明提供一种用于车漆保护的水性可撕膜溶胶树脂及其制备方法和应用,采用本发明配方制备的用于车漆保护的水性可撕膜具有韧性好,硬度高,光泽度高,透明耐磨。
本发明第三方面,还提供所述水性可撕膜溶胶树脂的应用,将所述溶胶树脂用喷枪均匀的喷涂在车漆上,喷涂后需自然干燥8~12分钟后烘烤,烘烤温度为60-70℃,烘烤20~35分钟,根据需求喷护多层,得到用于车漆保护的水性可撕膜。本发明的特点如下:本发明制备的水性可撕膜溶胶以水性聚氨酯树脂为基体,但是用于汽车保护的可撕膜对材料的韧性和硬度要求较高,而使用水性聚氨酯树脂无法满足要求。故本发明在组分中加入了水性丙烯酸乳液,用于增加膜的韧性,水性丙烯酸乳液的添加比例需要严格控制,水性丙烯酸乳液加入过少导致韧性不足,加入过多导致膜的附着性增大,难以从汽车上剥离。为了增强溶胶树脂的硬度,本发明前期在组分中加入了钛白粉、滑石粉、硅溶胶等成分,这些虽然能增加膜的强度,但是会出现分层或凝胶的现象,无论后期添加多少分散剂都无法解决分层的问题,于是通过研究探索,本发明添加了改性硅溶胶,不能增加膜的硬度,还能解决体系分层的问题。另外,还需要严格控制改性硅溶胶的添加量。与现有技术相比,本发明具有以下有益效果:本发明提供水性可撕膜溶胶树脂用于车漆保护时,具有高光泽。汽车面漆检测设备采用智能化操作界面,方便用户快速上手。
常规的汽车涂装过程中,喷涂后的车身需要进行漆膜表面的缺陷检测和修饰。目前,喷涂后车身漆膜检测主要通过人工目视的方法完成,存在耗时过长、效率低下及受人为因素影响等缺点,是制约涂装车身质量的关键因素之一。随着光电、自动化和计算机图像处理技术的发展,计算机视觉在不同工业部门得到了大量的应用。比如基于计算机视觉的表面缺陷自动检测技术已经大量地应用在织物表面、食品表面、钢表面、瓷砖表面以及多晶硅太阳能电池表面检测等领域。近几年,表面缺陷自动检测技术开始在汽车车身漆膜缺陷的检测领域发展,并且已经开始在一些汽车公司测试与应用。与传统的人工检测方法相比。借助面漆检测设备,汽车涂装的每一处细节都得以完美呈现。漳州非隧道式汽车面漆检测设备哪家好
公司的产品和专业技术还被广泛应用于半导体和光电行业的重要领域以及其他半导体。漳州非隧道式汽车面漆检测设备哪家好
深度学习算法主要是数据驱动进行特征提取和分类决策,根据大量样本的学习能够得到深层的、数据集特定的特征表示,其对数据集的表达更高效和淮确、所提取的抽象特征魯棒性更強,泛化能力更好,但检测结果受样本集的影响较大。深度学习通过大量的缺陷照片数据样本训练而得到缺陷判别的模型参数,建立出一套缺陷判别模型,终目标是让机器能够像人一样具有分析学习能力能够识別缺陷。深度学习算法基于TensorFlow和Keras框架,常用的深度学习算法有ResNet、MobileNet、MaskR-CNN和FasterR-CNN等。漳州非隧道式汽车面漆检测设备哪家好