(5)耐化学品性:主要是面漆与底漆、中途配套后,具有一定的耐酸、碱、机油、汽油、刹车液、冷冻液、肥皂液和各种洗涤剂的能力。
(6)施工性能:要求汽车面漆具有良好的施工性能,在装饰性要求高的场合,面漆干透后应具有优良的抛光性能;面漆液应具有较好的重涂性和修补性。
(7)耐高温性、抗寒性:汽车面漆应能适应高寒高热地区的气候条件要求。丙烯酸聚氨酯汽车面漆一般均能通过-40℃至50℃的温变实验,满足用户的要求。
国内外汽车用面漆树脂品种
目前各国使用的汽车用面漆,均以丙烯酸树脂、聚酯树脂为主,鉴于客车涂料特有的要求,国内外均采用丙烯酸聚氨酯汽车面漆。它兼有丙烯酸涂料和聚氨酯涂料各自独特的优点,是客车涂料的**涂料品种。其特点如下:
流水线安装、占地面积小、安装灵活的汽车面漆检测设备。哈尔滨代替人工汽车面漆检测设备
深度学习算法主要是数据驱动进行特征提取和分类决策,根据大量样本的学习能够得到深层的、数据集特定的特征表示,其对数据集的表达更高效和淮确、所提取的抽象特征魯棒性更強,泛化能力更好,但检测结果受样本集的影响较大。深度学习通过大量的缺陷照片数据样本训练而得到缺陷判别的模型参数,建立出一套缺陷判别模型,终目标是让机器能够像人一样具有分析学习能力能够识別缺陷。深度学习算法基于TensorFlow和Keras框架,常用的深度学习算法有ResNet、MobileNet、MaskR-CNN和FasterR-CNN等。FasterR-CNN是以RPN(注意力网络)和CNN(卷积神经网络)为算法框架,其中RPN用于生成可能存在目标的候选区域(Proposal),CNN用于对候选区域内的目标进行识别并分类,同时进行边界回归调整候选区域边框的大小和位置使其更精淮地标识缺陷目标。FasterR-CNN相比前代的R-CNN和FastR-CNN比较大的改进是将卷积结果共享给RPV和FastR-CNN网络,在提高准确率的同时提高了检测速度。总体来讲,传统图像算法是人工认知驱动的方法,深度学习算法是数据驱动的方法。深度学习算法一直在不断拓展其成用的场景.但传统图像方法因其成熟、稳定等特征仍具有应用价值。目前。马鞍山汽车面漆检测设备供应商家汽车面漆检测设备具备强大的数据存储功能,方便用户随时查看历史数据。
图像处理单元通过使用一系列算法对图片进行处理,获得缺陷3D或2D特征,通过与数据库比对之后,获得缺陷位置、分类、尺寸等信息,然后将数据进行输出。漆膜缺陷自动检测系统构成汽车车身长度一般在~m,宽度在~m,而且车身曲面多,结构比较复杂。为了能将车身外表所有区域都覆盖到,需要增加光源和相机数量或者将光源和相机安装在机器人等可移动设备上,目前研究和应用较多的主要有以下2种结构:1)将光源和CCD相机安装到包围车身的钢结构框架上,通过增加光源和CCD相机数量的方式覆盖整个车身。这种结构的优点是结构简单,调试时只需要调整相机角度,耗时短。缺点是柔性低,不同的车型外形有较大差异时不能通用。2)将光源和CCD相机集成到布置在车身两侧的机器人手臂上,使用2台以上的机器人,可以增加行走轨道扩大检测区域。此结构优点是机器人相对灵活,对车身外表任何区域都可以进行拍摄,柔性高,不同车型可混线检测。缺点就是系统结构复杂,检测一台车的时间相对第一种结构要长。能在40~60JPH的涂装生产线上,用来检测直径mm的缺陷。4台机器人并联使用,每台机器人都安装了1个大尺寸的显示器和4台200万像素的相机,每台相机在一个检测位置会拍摄8张图像。
06年以前国内机器视觉产品主要集中在外资制造企业,规模都较小,06年开始,工业机器视觉应用的客户群开始扩大到印刷、食品等检测领域,2011年市场开始高速增长,随着人工成本的增加和制造业的升级需求,加上计算机视觉技术的快速发展,越来越多机器视觉方案渗透到各领域,到2016年我国机器视觉市场规模已达近70亿元。机器视觉中,缺陷检测功能,是机器视觉应用得多的功能之一,主要检测产品表面的各种信息。在现代工业自动化生产中,连续大批量生产中每个制程都有一定的次品率,单独看虽然比率很小,但相乘后却成为企业难以提高良率的瓶颈,并且在经过完整制程后再剔除次品成本会高很多(例如,如果锡膏印刷工序存在定位偏差,且该问题直到芯片贴装后的在线测试才被发现,那么返修的成本将会是原成本的100倍以上),因此及时检测及次品剔除对质量控制和成本控制是非常重要的,也是制造业进一步升级的重要基石。在检测行业,与人类视觉相比,机器视觉优势明显1、精确度高:人类视觉是64灰度级,且对微小目标分辨力弱;机器视觉可显著提高灰度级,同时可观测微米级的目标。2、速度快:人类是无法看清快速运动的目标的,机器快门时间则可达微秒级别。汽车面漆检测设备具有智能化分析功能,方便用户快速了解涂层状况。
目前汽车车身的漆面缺陷检测主要是依赖传统的人工目视检查,因检测效率低、检测标准不够客观,并且容易受人工分心、疲劳等主观因素的影响,越来越难以满足工艺过程的测量和检测要求。因此,对自动化缺陷检测装置的需求日益增强,这种自动化缺陷检测装置不仅可以严格地管控产品质量,还能及时对产品缺陷进行工艺溯源,为工艺品质改善提供数据支持。车身漆面的缺陷种类繁多,不同的生产厂家对缺陷的定义存在差异。从缺陷的光学成像形式可以归类为:色差类缺陷、脏污类缺陷、纹理类缺陷、划伤碰伤类缺陷、凹凸类缺陷。单一的2d成像方式和检测方法难以应对常见的缺陷,对所有缺陷同时的检测,往往需要2d成像方式和3d成像方式相互结合。3d成像方式中激光三角法和条纹投影,是对高度的重建。基于条纹投影原理的三维重建设备,主要应用于漫反射物体。激光三角法可以应用于类镜面物体的高度测量,但是难以检测微米级别的缺陷。3d成像方式中,光度立体法和条纹反射(相位测量偏折术)是对梯度的重建。基于朗伯光照模型的光度立体法对漫反射表面的梯度重建精度较高,但很难直接应用于镜面物体。相位测量偏折术对镜面物体的梯度重建精度很高,在原理上可以到达亚微米级别。高级车型外观检测:品质高、要求高的汽车面漆检测设备。宜昌工业质检汽车面漆检测设备供应商
实时检测汽车面漆的色差,确保涂装效果的一致性。哈尔滨代替人工汽车面漆检测设备
汽车面漆检测设备是用于汽车整车制造工厂的后道检测工序,主要用于检测汽车表面油漆的划痕、空洞、瑕疵、凸点等缺陷的检测,是汽车生产工序后质量的保障型设备。车身骨架采用传统冲压焊装工艺制造,涂装车间只对车身骨架进行涂装,面漆采用粉末喷涂技术。由于车身骨架外露面积较小,所以面漆颜色不必与覆盖件相同,深浅各1种即可。大面积的覆盖件都是采用敷膜技术制造的塑料件,颜色有上千种。这样简化了车身涂装工艺,在降低涂装成的同时,使涂装的VOC排放达到7g/m2左右,远低于欧洲排放法规的要求。哈尔滨代替人工汽车面漆检测设备