一支科研团队开发了基于惯性测量单元(IMU)的牧草生物量实时估算系统,为牧场轮牧规划和载畜量优化提供了低成本解决方案。该研究设计了两种IMU传感系统:IMU-Ski(将IMU传感器安装在连接压缩滑板的连杆上,通过滑板随作物冠层轮廓的垂直运动记录连杆角度变化)和IMU-Roller(在圆柱形滚筒两侧的连杆上安装双IMU传感器,同步记录两侧作物高度),并结合无人机RGB图像提取的植被覆盖率(VC),分别以总作物高度(TCH)、VC及两者组合为自变量,为百慕大草和紫花苜蓿构建预测模型。实验结果表明,IMU-Ski性能优于IMU-Roller,其基于TCH的模型在百慕大草中实现的决定系数(R²)和2628kg湿生物量/公顷的标准误差(SeY),在紫花苜蓿中R²达;TCH与VC组合虽在百慕大草中实现比较高R²(),但TCH的模型已能满足实用需求,且避免了VC数据采集与后处理的复杂性,为牧场牧草生物量估算提供了可行的技术方案。 如何确保导航传感器的长期稳定性?上海IMU数字传感器生产厂家

深海探测中,GPS信号无法穿越水体,传统导航系统易受水流干扰,位置精度不足。近日,中科院某研究所研发出适用于深海环境的IMU导航模块,为水下机器人提供可靠导航方案。该模块采用抗压、抗腐蚀的特种IMU传感器,可在水下1000米深度稳定工作,采样率达1000Hz,实时输出机器人的姿态、速度及位移数据。通过与声学位置技术融合,构建多源导航模型,抵消水流干扰导致的漂移,位置误差保持在±米/100米航程内。同时,IMU数据可辅助水下机器人调整推进器功率,优化航行姿态,降低能耗。海试结果显示,搭载该模块的水下机器人在南海1000米深海区域完成地形探测任务,探测精度较传统系统提升40%,续航延长20%。该模块已应用于深海生命观测、海底资源勘探等项目,未来有望拓展至深海救援、海底管道检测等场景。 江苏国产IMU传感器品牌无人机为何依赖IMU传感器?

中挪联合科研团队提出一种基于惯性测量单元(IMU)的6自由度(6-DOF)相机运动校正方法,解决了摄影测量和光学测量中环境干扰(如风、地面振动)导致的相机抖动问题。该方法依赖IMU传感器,通过卡尔曼滤波融合加速度计、陀螺仪和磁力计数据,估算相机的三轴旋转(横滚、俯仰、偏航)和三轴平移(前冲、侧移、升降)运动;构建6个相机模型,分别计算各自由度运动引发的像素偏移,终从图像序列中剔除抖动噪声。实验验证表明,该方法运动校正率约80%,物体距离(3-12m)对校正效果影响极小;100mm焦距镜头的校正率()略优于50mm镜头();像素抖动噪声中90%以上由相机旋转引起,旋转诱导的像素偏移与物体距离无关,而平移诱导的偏移与物体距离呈负相关。该方法无需依赖静态参考点,部署简便,适用于桥梁监测、无人机测量等多种光学测量场景。
研究团队将IMU传感器集成到农业工作者日常佩戴的装备中,这些小巧耐用的传感器能实时捕捉躯干、肩部、肘部等关键部位的动态变化。即便在尘土飞扬、振动频繁、光线多变的户外农田环境中,传感器依然能保持出色的监测精度,相比传统姿势追踪工具,适应性和可靠性大幅提升。为进一步优化数据准确性,系统还融合了无迹卡尔曼滤波器。该算法能较好过滤户外环境中的干扰噪声,确保采集到的工作姿势数据真实可靠,为后续评估提供精细依据。对农业工作者而言,反复弯腰、扭转等动作易导致肌肉骨骼劳损,而这套IMU系统可提前识别高危姿势,助力研究人员和雇主及时调整作业流程、开展防护培训,从源头减少伤害。这项研究也打破了人们对IMU技术的固有认知——它不只是航空航天等高科技领域的“专属工具”,更能扎根农业场景,成为守护基层劳动者的实用技术,为职业监测技术向高精度、强实用性升级提供了新方向。IMU传感器的抗干扰能力如何?

近期科研团队研发并实地验证了一款基于超宽带(UWB)与惯性测量单元(IMU)融合导航的木瓜温室自主喷雾机器人,解决了传统人工喷雾劳动强度大、化学成分暴露高及温室环境GPS信号失效的问题。该机器人采用4个温室固定UWB基站与2个车载移动UWB模块,结合BNO055IMU传感器,通过无迹卡尔曼滤波(UKF)融合位置、加速度、角速度及姿态数据,实现精位与航向估计;搭载48V锂电池、200L容量及可调压喷雾系统,支持预设路径导航、化学成分耗尽自动返回补给站及断点续喷功能,同时集成超声波碰撞传感器与手动急停开关作业安全。在中国台湾高雄木瓜温室的实地测试表明,机器人比较高作业速度达m/s,横向偏差在m以内,喷雾雾滴密度(果实表面1708个/cm²)和均匀性优于传统背负式喷雾器,田间作业效率(ha/h)是人工喷雾的5倍,且害虫防治效果与人工相当,完全避免了人员直接接触化学成分,为温室精细农业提供了安全、可持续的解决方案。 如何选择适合机器人应用的IMU?上海IMU融合传感器厂家
IMU传感器可以通过螺丝固定、粘贴或嵌入到设备中,具体安装方式取决于应用需求和设备设计。上海IMU数字传感器生产厂家
识别人体步态是外骨骼机器人实现人机协同操作的关键,现有基于惯性测量单元(IMU)的步态识别方法多利用惯性数据,忽视人体关节空间关联与运动时序特征,难以满足外骨骼实时操作需求。尤其在行走、上下楼梯、爬坡等多种复杂步态场景中,传统算法易因特征提取不完全导致识别精度不足。近日,华东理工大学等团队在《iScience》期刊发表成果,提出一种融合时空注意力机制的双流时空图卷积网络(2s-ST-STGCN),为多IMU的骨骼式步态识别提供新方案。该技术通过人体正运动学求解模块,将IMU采集的腰、大腿、小腿、脚踝等部位的九轴运动数据,转化为7节点、8节点、10节点三种骨骼模型,创新性引入双流结构,同时输入关节数据、骨骼数据及其运动信息,搭配时空注意力模块捕捉步态周期中关键时序帧与空间关节关联。 上海IMU数字传感器生产厂家