您好,欢迎访问

商机详情 -

进口平衡传感器校准

来源: 发布时间:2025年12月20日

    识别人体步态是外骨骼机器人实现人机协同操作的关键,现有基于惯性测量单元(IMU)的步态识别方法多利用惯性数据,忽视人体关节空间关联与运动时序特征,难以满足外骨骼实时操作需求。尤其在行走、上下楼梯、爬坡等多种复杂步态场景中,传统算法易因特征提取不完全导致识别精度不足。近日,华东理工大学等团队在《iScience》期刊发表成果,提出一种融合时空注意力机制的双流时空图卷积网络(2s-ST-STGCN),为多IMU的骨骼式步态识别提供新方案。该技术通过人体正运动学求解模块,将IMU采集的腰、大腿、小腿、脚踝等部位的九轴运动数据,转化为7节点、8节点、10节点三种骨骼模型,创新性引入双流结构,同时输入关节数据、骨骼数据及其运动信息,搭配时空注意力模块捕捉步态周期中关键时序帧与空间关节关联。 通过多轴加速度与陀螺仪数据,IMU 传感器可捕捉桥梁微震动,为工程安全预警提供可靠依据。进口平衡传感器校准

进口平衡传感器校准,传感器

    人形机器人位置是其运动的关键技术,但非连续支撑、冲击振动及惯性导航漂移等问题,导致传统位置方法难以满足精度需求,且部分方案存在硬件复杂、计算量大等局限。近日,东南大学、新加坡南洋理工大学等团队在《BiomimeticIntelligenceandRobotics》期刊发表研究成果,提出一种基于腿部正向运动学与IMU融合的步态里程计算法。该算法首先建立机器人腿部正向运动学模型,通过D-H参数法求解机身与足部的坐标变换关系;再结合IMU采集的三轴加速度、角速度及欧拉角数据,构建卡尔曼滤波模型,将运动学信息与IMU数据深度融合,实现机器人位置和速度的精细估计。该方案需机器人配备关节编码器和IMU,硬件需求低、计算复杂度小,可适配双足、四足等多种腿部机器人。该算法为室内人形机器人位置提供了有力解决方案,硬件依赖低、适用性广。未来可进一步优化足底滑动补偿策略,提升机器人在复杂地形下的位置鲁棒性。 9轴惯性传感器厂家角度传感器的精度会受到哪些因素的影响?

进口平衡传感器校准,传感器

    我国的一支科研团队设计并校准了一种内嵌微机电系统惯性测量单元(MEMS-IMU)的球形传感器颗粒,实现了与实心球体的运动学等效,这为均质致密颗粒实验中粒子运动信息的测量提供了更具代表性的工具。该传感器颗粒直径40毫米,采用双层球形结构,确保在形状、密度、质心位置、转动惯量和弹性模量等关键参数上与等直径7075系列实心铝球一致,可测量±16g的三轴加速度和±2000°/s的三轴角速度,以1000Hz的高采样率持续工作一小时。研究通过单摆实验验证了传感器颗粒质心与几何中心重合,经自由落体、旋转测试完成了加速度计和陀螺仪的校准,其密度差异小于,转动惯量差异在4%以内。静水中自由沉降实验进一步证实,该传感器颗粒的运动轨迹和速度特性与实心铝球高度一致,且经过24小时耐候性测试展现出良好的稳定性和耐用性。这种低成本、运动学等效的传感器颗粒,为颗粒物质统计力学实验提供了可靠的示踪工具,推动了颗粒追踪技术的发展。

    我国的一支科研团队提出了一种深度学习辅助的模型基紧密耦合视觉-惯性姿态估计方法,解决了视觉失效场景下的头部旋转运动姿态估计难题,对虚拟现实、增强现实、人机交互等领域的高精度姿态感知具有重要意义。该方法基于多状态约束卡尔曼滤波(MSCKF)构建视觉-惯性紧密耦合框架,整合了传统模型基方法与深度学习技术:设计轻量化扩张卷积神经网络(CNN),实时估计IMU测量的偏差和比例因子修正参数,并将其融入MSCKF的更新机制;同时提出多元耦合运动状态检测(MCMSD)与动态零更新机制相结合的融合策略,通过视觉光流信息与惯性数据的决策级融合实现精细运动状态判断,在静止状态时触发零速度、零角速率等伪测量更新以减少误差累积。实验验证表明,该方法在包含间歇性视觉失效的全程旋转运动中,姿态估计均方根误差(RMSE)低至°,相比传统CKF、IEKF等方法精度明显提升,且单帧更新耗时,兼顾了实时性与鲁棒性。在真实场景测试中,即使相机被遮挡15秒,该方法仍能明显减少IMU漂移,保持稳定的姿态追踪,充分满足实际应用需求。导航传感器在室内和室外的表现有何不同?

进口平衡传感器校准,传感器

柔性机械臂因重量轻、功率重量比高,主要用于航空、工业等领域,但结构柔性使其控制难度大——传统采用偏微分方程(PDE)建模,计算复杂难以实时应用。近日,研究人员提出用惯性测量单元(IMU)传感器网络解决这一问题:将柔性臂拆分为多个虚拟刚性段,通过IMU采集每个段的加速度与角速度数据,结合互补滤波处理传感器漂移和噪声,准确估算各段姿态与位置,将柔性臂动力学简化为易实时计算的普通微分方程(ODE)模型。基于此模型,研究人员设计鲁棒模型预测控制(RSMPC)策略,无需复杂PDE计算即可实现实时控制。实验用4.5米长的柔性液压机械臂验证:IMU估算的端点位置与激光测量结果一致性高,控制效果优于PID、PDE等方法,且输入更平滑。该方法为柔性机械臂的实时控制提供了实用路径,未来可结合模态分析减少IMU使用数量,或适配不同边界条件,推动柔性机械臂更主要应用。通过实时监测货物倾斜、振动与位移,IMU 传感器可记录运输过程中的异常冲击,助力物流企业优化包装方案。江苏6轴惯性传感器测量精度

如何选择适合机器人应用的IMU?进口平衡传感器校准

    居家瑜伽练习中,使用者难以自行判断动作标准度,易因姿势错误导致肌肉拉伤。近日,某智能硬件品牌推出集成IMU的智能瑜伽垫,实现练习姿态的实时监测与精细纠错。瑜伽垫内置16个分布式IMU传感器,均匀覆盖躯干、四肢对应区域,采样率达500Hz,实时捕捉身体各部位的姿态角度、弯曲幅度及重心分布。通过蓝牙连接手机APP,系统生成三维动作模型,与瑜伽教练的标准动作对比,精细识别含胸、塌腰、关节超伸等问题,通过语音实时指导调整。此外,IMU数据可生成练习报告,记录姿态进步轨迹,提供个性化训练计划。实测显示,该瑜伽垫对瑜伽体式的识别准确率达,能精细捕捉°的姿态偏差,帮助使用者矫正动作后,肌肉发力效率提升30%。目前产品已上市,适配入门、进阶等不同水平瑜伽练习者,未来将新增冥想呼吸节奏监测功能,完善居家健身管理方案。 进口平衡传感器校准

标签: 传感器 脑电