您好,欢迎访问

商机详情 -

安徽目标跟踪解决

来源: 发布时间:2025年12月22日

在无人机识别这个领域,应用十分广,因此针对于这方面的教学必不可少。目前国产化的识别传感器当属瑞芯微的RK3588,因此许多院校都会选择采用RK3588来进行教学,成都慧视开发的Viztra-HE030图像处理板就是利用RK3588打造而成,能够根据不同规格的相机深度定制接口。(不同接口的RK3588图像处理板)如果院校想进一步节约时间提升效率,成都慧视还可以提供训练学习设备的整套方案。在高性能Viztra-HE030图像处理板的基础上,根据需求帮助选择合适的相机,并且针对算法这块,我们能够提供一个高效的深度学习算法开发平台SpeedDP,这个平台能够通过大量的识别检测算法模型训练开发,实现对新数据集的快速AI自动图像标注,一方面省去大量手动标注工作,另一方面帮助提升算法性能。目标跟踪受到干扰怎么办?安徽目标跟踪解决

目标跟踪

之所以能产生这种可见运动或表观运动,是因为物体以不同的速度在不同的方向上移动,或者是因为相机在移动(或者两者都有)在很多应用程序中,跟踪表观运动都是极其重要的。它可用来追踪运动中的物体,以测定它们的速度、判断它们的目的地。对于手持摄像机拍摄的视频,可以用这种方法消除抖动或减小抖动幅度,使视频更加平稳。运动估值还可用于视频编码,用以压缩视频,便于传输和存储。被跟踪的运动可以是稀疏的(图像的少数位置上有运动,称为稀疏运动),也可以是稠密的(图像的每个像素都有运动,称为稠密运动)跟踪视频中的特征点从前面章节介绍的内容可以看出,根据特殊的点分析图像,可以使计算机视觉算法更加实高效。云南目标跟踪工程慧视图像处理板能够实现抖动锁定跟踪不丢失。

安徽目标跟踪解决,目标跟踪

在目标跟踪领域,场景信息与目标状态的融合十分重要,首先,场景信息包含了丰富的环境上下文信息,对场景信息进行分析及充分利用,能够有效地获取场景的先验知识,降低复杂的背景环境以及场景中与目标相似的物体的干扰;同样地,对目标的准确描述有助于提升检测与跟踪算法的准确性与鲁棒性.总之,尝试研究结合背景信息和前景目标信息的分析方法,融合场景信息与目标状态,将有助于提高算法的实用性能。慧视光电开发的图像处理板,具备高性能、高精度的特点,能够进行精确的目标跟踪。

“启明935A”系列芯片已经成功点亮,并完成各项功能性测试,达到车规级量产标准。启明935A是行业首颗基于Chiplet(芯粒/小芯片)异构集成范式的自动驾驶芯片,但并非单一芯片,而是一个家族系列。启明935HUBChiplet可以和不同数量的大熊星座AIChiplet互相搭配,再结合灵活的封装方式,快速形成不同性能等级的SoC芯片。它还支持高带宽的PBLink多芯互连,双芯双向带宽128GB/s,四芯双向带宽64GB/s。启明935A每颗芯片都支持比较大20路的1080p60摄像头输入,可应用于各类端侧AI部署。得益于大熊星座NPU天然支持Transformer结构,初步支持的模型有Yolo系列、ResNet50、PSPNet、PointNet++、TrafficSign_Retinanet、BevDet、miniCPM、Unet_ResNet50、PointPillars、PillarNest、M2track、BevFusion、PaliGemma、LLaMa-3B、8B等等。慧视光电的图像处理板能够实现变倍锁定跟踪不丢失。

安徽目标跟踪解决,目标跟踪

而维修机器人则能够通过图像识别、精细远程控制技术,实现远程快速维修,通过加装高性能图像处理板,机器人能够精细电网缺陷以及损坏程度,并通过摄像头实时回传高清画面,工程师只需要远程操控机器人进行修补,实现精细缝合。整个过程只需要极少数的人员参与,整个巡检维修的时间能够从7小时缩减到1小时,极大地保障了电力供应。成都慧视光电采用RK3588开发而成的Viztra-HE030图像处理板,具备八核处理器,采用BTB传输接口,拥有极强传输能力,成都慧视能够凭借丰富的经验,快速集成开发SDI、CVBS、DVP、LVDS、cameralink等接口以及金属外壳和散热器。通过6.0TOPS的算力,以及丰富的接口定制,板卡能够快速适配不同的无人机和机器人,用在我国西部电力运维领域,将是工程师打造智能化维护的关键技术。RV1126图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标跟踪及跟踪算法。吉林目标跟踪技术

Viztra-LE034图像跟踪板采用国内智能AI芯片。安徽目标跟踪解决

另外,经典的跟踪方法还有基于特征点的光流跟踪,在目标上提取一些特征点,然后在下一帧计算这些特征点的光流匹配点,统计得到目标的位置。在跟踪的过程中,需要不断补充新的特征点,删除置信度不佳的特征点,以此来适应目标在运动中的形状变化。本质上可以认为光流跟踪属于用特征点的来表征目标模型的方法。在深度学习和相关滤波的跟踪方法出现后,经典的跟踪方法都被舍弃,这主要是因为这些经典方法无法处理和适应复杂的跟踪变化,它们的鲁棒性和准确度都被前沿的算法所超越,但是,了解它们对理解跟踪过程是有必要的,有些方法在工程上仍然有十分重要的应用,常常被当作一种重要的辅助手段。安徽目标跟踪解决