从软件的角度来看,整个视频跟踪系统主要是由电视摄像机及控制、图像获取模块、图像显示模块、数据库,运动检测,目标跟踪,报警输入和人机接口模块等组成的。视觉计算模块是视频跟踪系统的重点,是实现目标检测和跟踪的关键,如图3所示。一般采取先检测后跟踪(Detect-before-Track)方式,目标的检测和跟踪是紧密结合的。检测是跟踪的前因,并为跟踪提供了目标的信息(如目标的位置,大小,模式和速度估计等),而跟踪则是检测的延续,实时利用检测得到的知识去验证目标的存在。RV1126图像处理板识别概率超过85%。国产目标跟踪经验丰富
利用图像处理技术实现导弹的远程打击是一项运用了比较长时间的技术,相比于现代化的电子控制,它具备低受干扰的特点,特别是无人机在军备领域的广泛应用,图像处理的作用重新受到重视。远程打击时,需要对整个弹的识别能力进行深度学习训练,不断的训练能够让AI更加聪明,让AI知道该打击什么,从而提升打击精度。在前期的试验印证阶段,需要进行大量反复的试验训练,通过在导弹前端植入导引头,给导弹装上眼睛,可以实时记录导弹打出后的视频画面,然后将大量的视频数据采集到一起用于分析改进。省时省力目标跟踪功能RV1126图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标跟踪及跟踪算法。

目标跟踪算法具有不同的分类标准,可根据检测图像序列的性质分为可见光图像跟踪和红外图像跟踪;又可根据运动场景对象分为静止背景目标跟踪和运动背景下的目标跟踪。由于基于区域的目标跟踪算法用的是目标的全局信息,比如灰度、色彩、纹理等。因此当目标未被遮挡时,跟踪精度非常高、跟踪非常稳定,对于跟踪小目标效果很好,可信度高。但是在灰度级的图像上进行匹配和全图搜索,计算量较大,非常费时间,所以在实际应用中实用性不强;其次,算法要求目标不能有太大的遮挡及其形变,否则会导致匹配精度下降,造成运动目标的丢失。
在无人机识别这个领域,应用十分广,因此针对于这方面的教学必不可少。目前国产化的识别传感器当属瑞芯微的RK3588,因此许多院校都会选择采用RK3588来进行教学,成都慧视开发的Viztra-HE030图像处理板就是利用RK3588打造而成,能够根据不同规格的相机深度定制接口。(不同接口的RK3588图像处理板)如果院校想进一步节约时间提升效率,成都慧视还可以提供训练学习设备的整套方案。在高性能Viztra-HE030图像处理板的基础上,根据需求帮助选择合适的相机,并且针对算法这块,我们能够提供一个高效的深度学习算法开发平台SpeedDP,这个平台能够通过大量的识别检测算法模型训练开发,实现对新数据集的快速AI自动图像标注,一方面省去大量手动标注工作,另一方面帮助提升算法性能。RK3588系列的AI视频跟踪板。

而维修机器人则能够通过图像识别、精细远程控制技术,实现远程快速维修,通过加装高性能图像处理板,机器人能够精细电网缺陷以及损坏程度,并通过摄像头实时回传高清画面,工程师只需要远程操控机器人进行修补,实现精细缝合。整个过程只需要极少数的人员参与,整个巡检维修的时间能够从7小时缩减到1小时,极大地保障了电力供应。成都慧视光电采用RK3588开发而成的Viztra-HE030图像处理板,具备八核处理器,采用BTB传输接口,拥有极强传输能力,成都慧视能够凭借丰富的经验,快速集成开发SDI、CVBS、DVP、LVDS、cameralink等接口以及金属外壳和散热器。通过6.0TOPS的算力,以及丰富的接口定制,板卡能够快速适配不同的无人机和机器人,用在我国西部电力运维领域,将是工程师打造智能化维护的关键技术。慧视微型双光吊舱非常适用于无人机领域。浙江高效目标跟踪
AI视频跟踪板哪里有?国产目标跟踪经验丰富
在深度学习中,解决训练数据不足常用的一个技巧是“预训练-微调”(Pretraining-finetune),即大数据集上面预训练模型,然后在小数据集上去微调权重。但是,在训练数据极其稀少的时候(只有个位数的训练图片),这个技巧是无法奏效的。图2展示了一个检测模型预训练过后,在单张训练图片上微调的过程:尽管训练集上逐渐收敛,但是检测器仍无法检测出测试图片中的物体。这反映出了“预训练-微调”框架的泛化能力不足。利用SpeedDP经过大量的数据训练后,机器就能够精确检测跟踪图像中的物体。国产目标跟踪经验丰富