视觉跟踪技术是计算机视觉领域(人工智能分支)的一个重要课题,有着重要的研究意义;且在导弹制导、视频监控、机器人视觉导航、人机交互、以及医疗诊断等许多方面有着广泛的应用前景。随着研究人员不断地深入研究,视觉目标跟踪在近十几年里有了突破性的进展,使得视觉跟踪算法不只是局限于传统的机器学习方法,更是结合了近些年人工智能热潮—深度学习(神经网络)和相关滤波器等方法,并取得了鲁棒(robust)、精确、稳定的结果。慧视AI图像处理板是高精度识别的板卡。附近目标跟踪批发商
另外,经典的跟踪方法还有基于特征点的光流跟踪,在目标上提取一些特征点,然后在下一帧计算这些特征点的光流匹配点,统计得到目标的位置。在跟踪的过程中,需要不断补充新的特征点,删除置信度不佳的特征点,以此来适应目标在运动中的形状变化。本质上可以认为光流跟踪属于用特征点的来表征目标模型的方法。在深度学习和相关滤波的跟踪方法出现后,经典的跟踪方法都被舍弃,这主要是因为这些经典方法无法处理和适应复杂的跟踪变化,它们的鲁棒性和准确度都被前沿的算法所超越,但是,了解它们对理解跟踪过程是有必要的,有些方法在工程上仍然有十分重要的应用,常常被当作一种重要的辅助手段。山东工业目标跟踪RK3399搭载AI智能算法,实现目标识别与跟踪。
在无人机摄像头的基础上加装慧视光电开发的Viztra-LE026图像处理板,这是一块轻型化、低功耗的图像处理板,用在无人机上面既不会过多占用空间,也不会过多消耗续航,通过目标识别算法的赋能,就可以针对像东北虎这样的动物AI自动识别,一旦识别到老虎的特征物体,无人机就能够立即锁定并抵近观察,为消防和公安提供精确坐标。Viztra-LE026图像处理板采用的是瑞芯微RV1126芯片,能够输出2.0TOPS的算力。而在算法方面,成都慧视能够提供一站式AI算法训练平台SpeedDP,通过对大量动物的标注数据集的模型训练,能够实现对新数据集的快速AI自动标注,然后提升识别算法的性能。
当两个图像之间还有旋转或比例变化时,往往使用基于控制点的方法进行图像配准。所谓特征点匹配就是在一帧图像中寻找具有不变性质的结构—特征点,例如,灰度局部极大值、局部边缘、角等,与另一帧图像中的同类特征点作匹配,从而求得该两帧图像之间的变换关系。从现实的观点看,在全部特征点中,只有部分能得到正确的匹配,这是因为特征点寻找算法并非完美无缺。特征点匹配方法具有:处理的数据量不断减少、可能匹配的数目少于互相关方法和受照度、几何的变化影响较小的优点。根据具体的振动情况,选择合适的特征点和速度较快的匹配策略是该任务研究的重点。目前的研究工作都致力于图像间的自动配准,如直接相关匹配,基于图像分割技术的配准,利用封闭轮廓的形心作为控制点的配准等。成都RK3588智能跟踪板提供商。
通常,遮挡可以分为三种情况:目标间遮挡、背景遮挡、自遮挡。对于目标之间的相互遮挡,可以选择根据目标的位置和目标特征的先验知识来处理这一问题。而对于场景结构的导致的部分遮挡此方法则难以判断,因为难以辨认究竟是目标形状发生变化还是发生遮挡。所以,处理遮挡问题的通用方法是用线性或非线性动态建模方法对运动目标进行,并在目标发生遮挡时,预测目标的可能位置,一直到目标重新出现时再修正它的位置。可以用卡尔曼滤波器来实现估计目标的位置,也可以用粒子滤波对目标做状态估计。RK3399图像处理板识别概率超过85%。福建光纤数据目标跟踪
慧视RV1126图像跟踪板支持目标跟踪识别目标(人、车)。附近目标跟踪批发商
无人机能够通过高空拍摄快速获取大范围、多角度的地面信息。但是传统的摄像头只能获取视频数据,对于许多需要进行数据分析的行业来说显然不够智能化,从无人机视频数据中快速获取提炼大量有价值的信息,不仅能够提升工作效率,还能够减少不小的成本支出。这就是无人机的AI识别能力。通过识别算法,在无人机工作时就对目标范围进行AI检测识别,从而提炼所需信息。这就需要对无人机进行智能化改造,可以在传统无人机吊舱中植入成都慧视开发的高性能AI图像处理板,如利用RK3588深度开发而成的Viztra-HE030图像处理板,6.0TOPS的算力能够快速处理无人机识别到的复杂画面信息,这样就有了硬件基础,剩下的就需要对自身算法进行不断优化提升。附近目标跟踪批发商