您好,欢迎访问

商机详情 -

稳定目标跟踪市场报价

来源: 发布时间:2025年03月20日

无人机的迅猛发展,使得无人机的反制技术也水涨船高,常见的有电子干扰、无人机识别对抗等方式。后者采用图像识别技术,通过在无人机摄像头的基础上加装AI高性能图像处理板,在算法的作用下,就具备无人机识别的功能,为无人机对抗创造条件。由于无人机飞行速度极快,因此针对于这样环境下的AI识别需要“与众不同”的图像处理板。我们都知道,当视频帧率越高时,视频越能够体现画面细节信息,而图像识别算法正是逐帧进行识别,因此,摄像头捕捉到的画面细节越多,识别的精度就会越高。工程师以RK3399PRO核心板为基础进行定制开发,让摄像头更加智能高效,能够输出高清流的图像视频。稳定目标跟踪市场报价

目标跟踪

成都慧视开发的各款式的AI图像处理板,就是助力低空经济发展的传感器技术设备之一。AI图像处理板具备智能图像检测识别以及跟踪的能力,在低空经济领域,能够让无人机实现智慧化赋能。成都慧视开发的RK3588系列图像处理板Viztra-HE030,具备6.0TOPS算力,是当下国产图像处理板的性能前列的产品,对于一些复杂应用场景下的识别,RK3588是当仁不让。我司可以根据需求,定制CVBS、SDI、LVDS、DVP、CmaeraLink等接口,实现快速适配应用。而RV1126系列图像处理板Viztra-LE026,整体呈小型化设计,尺寸小,整体功耗不大于4W,用在无人机领域,一不会过多占用空间,二不会增加无人机的功耗负担,2.0TOPS的算力,也能满足大多数应用场景的需求。稳定目标跟踪市场报价RV1126图像处理板的目标识别能力突出。

稳定目标跟踪市场报价,目标跟踪

成都慧视推出的深度学习算法开发平台SpeedDP,它的主要功能就是帮助进行算法模型的测试验证,进行快速的针对大量数据的AI自动标注,然后提升自身算法能力。在无人机智能炮弹测试验证中,通过对原始算法的模型训练,能够不断评估算法的能力,然后对新的打击数据集目标进行AI自动标注,让算法在学习中不断变得聪明。通过SpeedDP的应用,能够极大减少整个测试验证所需时间,减少人力成本支出,减少项目开发周期,让工程师不再为繁琐的图像标注浪费时间将更多的精力放在更重要的领域。

从软件的角度来看,整个视频跟踪系统主要是由电视摄像机及控制、图像获取模块、图像显示模块、数据库,运动检测,目标跟踪,报警输入和人机接口模块等组成的。视觉计算模块是视频跟踪系统的重点,是实现目标检测和跟踪的关键,如图3所示。一般采取先检测后跟踪(Detect-before-Track)方式,目标的检测和跟踪是紧密结合的。检测是跟踪的前因,并为跟踪提供了目标的信息(如目标的位置,大小,模式和速度估计等),而跟踪则是检测的延续,实时利用检测得到的知识去验证目标的存在。智能图像跟踪在机场周界中的应用。

稳定目标跟踪市场报价,目标跟踪

目标检测和跟踪是计算机视觉领域中的重要任务之一。随着深度学习的兴起,YOLO(You Only Look Once)算法在目标检测和跟踪领域引起了广关注。YOLO算法是一种在实时目标检测和跟踪领域具有重要地位的算法。通过引入卷积神经网络和一系列先进技术,YOLO算法在速度和准确性方面取得了明显的进展。然而,仍然有一些挑战需要解决,如目标尺度变化、小目标检测和复杂背景干扰等。随着研究的不断深入和技术的不断发展,YOLO算法有望在实时目标检测和跟踪领域发挥更大的作用。用于安防监控及状态监测的摄像头数量的飞速发展。稳定目标跟踪市场报价

RV1126处理板如何实现目标的识别及跟踪?稳定目标跟踪市场报价

相关滤波的跟踪算法始于2012年P.Martins提出的CSK方法,作者提出了一种基于循环矩阵的核跟踪方法,并且从数学上完美解决了密集采样(Dense Sampling)的问题,利用傅立叶变换快速实现了检测的过程。在训练分类器时,一般认为离目标位置较近的是正样本,而离目标较远的认为是负样本。回顾前面提到的TLD或Struck,他们都会在每一帧中随机地挑选一些块进行训练,学习到的特征是这些随机子窗口的特征,而CSK作者设计了一个密集采样的框架,能够学习到一个区域内所有图像块的特征。稳定目标跟踪市场报价