您好,欢迎访问

商机详情 -

绍兴研发监测台

来源: 发布时间:2023年11月04日

电机状态监测和故障诊断技术是一种了解掌握电机在使用过程中的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术,电机状态监测与故障诊断技术包括识别电机状态监测和预测发展趋势两方面。设备状态是指设备运行的工况,由设备运行过程中的各种性能参数以及设备运行过程中产生的二次效应参数和产品质量指标参数来描述。设备状态的类型包括:正常、异常和故障三种。设备状态监测是通过测定以上参数,并进行分析处理,根据分析处理结果判定设备状态。对设备进行定期或连续监测,包括采用各种测试、分析判别方法,结合设备的历史状况和运行条件,弄清设备的客观状态,获取设备性能发展的趋势规律,为设备的性能评价、合理使用、安全运行、故障诊断及设备自动控制打下基础。预计到2025年,缺口在1.3~3.7万人之间,这也反映出自动驾驶行业发展的旺盛需求和竞争激烈的现状。绍兴研发监测台

绍兴研发监测台,监测

在工业现场的预防性维护应用中,振动是大型旋转等设备即将发生故障的重要指标,一是在大型旋转机械设备的所有故障中,振动问题出现的概率比较高;另一方面,振动信号包含了丰富的机械及运行的状态信息;第三,振动信号易于拾取,便于在不影响机械运行的情况下实行在线监测和诊断。旋转类设备的预防性维护需要重点监控振动量的变化。其预测性诊断技术对于制造业、风电等的行业的运维具有非常重大的意义。通过设备振动等状态的预测性维护,可以及时发现并解决系统及零部件存在问题。但是对于一些不是因为设备问题而存在的固有振动,振动强度的不必要增加会对部件产生有害的力,危及设备的使用寿命和质量。在这种情况下,则需要采用振动隔离技术来解决和干预,有效抑制振动和噪声的危害,避免设备故障和流程关闭。温州发动机监测系统电机监测系统可以提高预防性维护效率,防止代价高昂的停机并提高设备性能。

绍兴研发监测台,监测

非标监测是指对非标准化设备或系统进行监测的过程。与标准设备相比,非标设备通常具有独特的设计和功能,因此需要专门的监测方法和工具。非标监测的目的是确保非标设备的正常运行和安全性。通过监测关键参数和性能指标,可以及时发现潜在问题并采取相应的措施进行修复或调整。非标监测的步骤包括确定监测目标、选择监测方法和工具、制定监测计划、实施监测、分析数据和结果,并根据需要进行维护和改进。在非标监测中,需要根据具体情况选择合适的监测方法和工具。这可能涉及到使用传感器、仪器和软件等技术手段来收集和分析数据。非标监测的重要性在于提高设备的稳定性和可靠性,减少故障和停机时间,提高生产效率和质量。同时,它还可以降低维修和更换成本,延长设备的使用寿命。总之,非标监测是确保非标设备正常运行和安全性的重要手段,对于提高生产效率和质量具有重要意义。

作为工业领域的一种关键旋转设备,对于终端用来说,关于电机维护的主要是电气班组设备工程师、电机维护工程师、电机检修人员等;对于电机厂家以及电机经销商来说,主要是电机售后服务工程师、电机销售人员,会涉及到电机的运行维护;险此之外,还有第三方检修人员等。目前已经有很多智能产品号称可以实现电机的预测性维护,但问题也非常多。1)传感器安装难。设备状态监测需要振动、噪声、温度传感器,通讯协议并不统一,自成体系,安装、使用、维护成本高昂。2)技术成本高。工业场景设备类型多,运行工况复杂,预测性维护算法涉及数据预处理、工业机理、机器学习,技术要求很高。3)时间成本高。预测性维护要实现,前期需要大量历史数据的支撑,数据采集、归纳、分析是一个漫长的过程。的电机智能运维,虽然被各大宣传媒体提得很多,但还远远未到落地很好乃至普及的程度,不论是预测性维护的预测效果,还是电机的智能运维的市场推广以及市场接受程度,对于电机运维来说,都还有很远的一段距离!盈蓓德科技开发的电机监测和故障预判系统,助力实现工业设备数智化管理和预测性维护。

绍兴研发监测台,监测

电机状态监测故障诊断技术是一种了解和掌握电机在使用过程中的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术,电机状态监测与故障诊断技术包括识别电机状态监测和预测发展趋势两方面。设备状态是指设备运行的工况,由设备运行过程中的各种性能参数以及设备运行过程中产生的二次效应参数和产品质量指标参数来描述。设备状态的类型包括:正常、异常和故障三种。设备状态监测是通过测定以上参数,并进行分析处理,根据分析处理结果判定设备状态。对设备进行定期或连续监测,包括采用各种测试、分析判别方法,结合设备的历史状况和运行条件,弄清设备的客观状态,获取设备性能发展的趋势规律,为设备的性能评价、合理使用、安全运行、故障诊断及设备自动控制打下基础。盈蓓德科技可以搭建造价低廉,性能稳定,安装方便,使用简单,维护工作量少的旋转类设备振动监测系统。南通智能监测设备

大型电机监测和故障预判系统助力实现工业设备智能化管理和预测性维护。绍兴研发监测台

传统维护模式中的故障后维护与定期维护将影响生产效率与产品质量,并大幅提高制造商的成本。随着物联网、大数据、云计算、机器学习与传感器等技术的成熟,预测性维护技术应运而生。以各类如电机、轴承等设备为例,目前已发展到较为成熟的在线持续监测阶段,来实现查看设备是否需要维护、怎么安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备的预测性维护。电动机是机械加工中不可或缺的必备工具,电动机在运转中常产生各种故障,为保证电动机运行安全,对电动机运行状态进行在线监测尤为重要。

以三相异步电动机为研究对象,采用传感器获取电动机运行中的重要参数(振动、噪声、转速及温度等),由时/频域分析及能量分析等方法提取电动机运行特征量,构成特征向量,采用BP神经网络训练的方法建立状态识别模型,通过BP神经网络模式识别方法,判断电动机运行的状态,在此基础上,利用LabVIEW软件构建可视化监测系统,将电动机运行参数及状态实时显示在可视化界面中,完成在线智能监测。 绍兴研发监测台