您好,欢迎访问

商机详情 -

杭州营销大模型知识库

来源: 发布时间:2025年08月06日

    人工智能大模型的发展,会给我们的生活带来哪些改变呢?

其一,引发计算机算力的革新。大模型参数量的增加导致训练过程的计算需求呈现指数级增长,高性能计算机和分布式计算平台的普及,将成为支持更大规模的模型训练和迭代的重要方式。

其二,将引发人工智能多模态、多场景的革新。大模型利用多模态数据进行跨模态学习,从而提升其在多个感知任务上的性能和表现。

其三,通过结合多模态数据和智能算法,大模型能够赋能多个行业,为行业提质增效提供助力,推动数据与实体的融合,改变行业发展格局。在法律领域,大模型可以作为智能合同生成器,根据用户的需求和规范,自动生成合法和合理的合同文本;在娱乐领域,大模型可以作为智能剧本编剧,根据用户的喜好和风格,自动生成有趣和吸引人的剧本故事;在工业领域,大模型可以作为智能质量控制器,根据生产数据和标准,自动检测和纠正产品质量问题;在教育领域,大模型可以作为智能学习平台,根据知识图谱和学习路径,自动推荐和组织学习资源。 通过预测性维护、生产优化和质量控制等应用,AI大模型帮助制造商实现了生产过程的智能化和自动化。杭州营销大模型知识库

杭州营销大模型知识库,大模型

    目前国内大型模型出现百家争鸣的景象,各自的产品都各有千秋,还没有谁能做到一家独大。国内Top-5的大模型公司,分别是:百度的文心一言、阿里的通义千问、腾讯的混元、华为的盘古以及科大讯飞的星火。

1、百度的文心一言:它是在产业实际应用中真正产生价值的一个模型,它不仅从无监督的语料中学习知识,还通过百度多年积累的海量知识中学习。这些知识,是高质量的训练语料,有一些是人工精标的,有一些是自动生成的。文心大模型参数量非常大,达到了2600亿。

2、阿里的通义千问:它是一个超大规模的语言模型,具备多轮对话、文案创作、逻辑推理、多模态理解、多语言支持等功能。参数已从万亿升级至10万亿,成为全球比较大的AI预训练模型。

3、腾讯的混元:它是一个包含CV(计算机视觉)、NLP(自然语言处理)、多模态内容理解、文案生成、文生视频等方向的超大规模AI智能模型。腾讯在大语言模型AI的布局,尤其是类ChatGPT聊天机器人,有着别人无法比拟的优势,还可以通过腾讯云向B端用户服务。

4、华为的盘古:作为国际市场上抗打的企业,在AI领域自然也被给予了厚望。盘古大模型向行业提供服务,以行业需求为基础设计的大模型体系,目前在在矿山领域实现商用。 福州物业大模型定制AI大模型的应用为公共服务的提升和社会治理的创新提供了有力支持,帮助部门更好地了解民众需求。

杭州营销大模型知识库,大模型

    客服是企业与客户之间提供联络的重要纽带,在越来越重视用户体验和评价的当下,客服质量的高低直接影响了企业未来发展的命运。

  在客服行业发展的初期,一般为客户在产品出现问题后拨打商家电话,类似售后服务之类的。然后出现了IVR菜单导航,用户根据语音提示按键操作。以上两种模式一是服务比较滞后,二是操作复杂,用户体验都差。

  现在随着语音识别技术的不断发展,用户只要根据语音提示说出需要办理的业务,后台通过智能工单系统自动分配到对应的客服。但此时的技术还不成熟,主要是基于关键词检索,所以经常会出现系统被问傻的情况,用户体验依旧很差。

  2022年开始,以ChatGPT为主的大模型将客户联络带入了全新的发展阶段。大模型可以在多轮对话的基础上,联系上下文,给用户更准确的回答。在用户多次询问无果的时候,可以直接转接人工进行处理,前期的对话内容也会进行转接,用户无需再次重复自己的问题。这种客服对话流程的无缝衔接,极大地提升了用户体验和服务效率。

“大模型+领域知识”这一路线,是为了利用大模型的理解能力,将散落在企业内外部各类数据源中的事实知识和流程知识提取出来,然后再利用大模型的生成能力输出长文本或多轮对话。以前用判别式的模型解决意图识别问题需要做大量的人工标注工作,对新领域的业务解决能力非常弱,有了这类大模型以后,通过微调领域prompt,利用大模型的上下文学习能力,就能很快地适配到新领域的业务问题,其降低对数据标注的依赖和模型定制化成本。

杭州音视贝科技公司的智能外呼、智能客服、智能质检等产品通过自研的对话引擎,拥抱大模型,充分挖掘企业各类对话场景数据价值,帮助企业实现更加智能的沟通、成本更低的运营维护。 大模型人工智能正推动着自动化和智能化的新浪潮。

杭州营销大模型知识库,大模型

大模型在金融行业市场预测和客户服务方面的具体应用有:

1、市场预测大模型工具通过对大宗商品市场的数据分析,可以预测价格的变动趋势,帮助投资者把握机会。而在其他金融市场,大模型可以很好地预测涨跌趋势,帮助用户获取更好的收益。

2、客户服务在客户服务方面,大模型工具可以7×24不间断服务,不受情绪干扰,避免情绪化导致的投诉和违规风险。同时还可以准确预测需求,无论是客户接待、拜访,还是产品营销、推广,都能取得较好的工作成果,对于金融客服业务的支撑是多方面的。 大模型训练需要大量的计算资源,导致成本高昂,限制了其广泛应用。杭州物流大模型知识库

智能客服作为人工智能技术的应用之一,已经取得了很大的成就,具有巨大的发展潜力。杭州营销大模型知识库

企业可以采取相应的解决方案,为大模型落地创造良好的条件。

1、硬件基础优化通过使用高性能计算平台如GPU和TPU,扩大存储空间;利用并行计算和分布式计算技术提高计算效率,加速大模型的训练和推理过程。

2、数据处理与模型压缩数据清洗、标注和增强等技术能够提高大模型数据质量和可用性,使用模型压缩技术如量化、剪枝和蒸馏等,可改变模型大小,提高推理效率,缓解过拟合问题。

3、模型算法优化对模型架构和算法进行优化,如分层架构、并行结构、分布式计算与推断等,使其更适合大规模数据处理和运算,提高训练和推理速度。 杭州营销大模型知识库