您好,欢迎访问

商机详情 -

天津大模型应用案例

来源: 发布时间:2024年07月06日

    客服是企业与客户之间提供联络的重要纽带,在越来越重视用户体验和评价的当下,客服质量的高低直接影响了企业未来发展的命运。

  在客服行业发展的初期,一般为客户在产品出现问题后拨打商家电话,类似售后服务之类的。然后出现了IVR菜单导航,用户根据语音提示按键操作。以上两种模式一是服务比较滞后,二是操作复杂,用户体验都差。

  现在随着语音识别技术的不断发展,用户只要根据语音提示说出需要办理的业务,后台通过智能工单系统自动分配到对应的客服。但此时的技术还不成熟,主要是基于关键词检索,所以经常会出现系统被问傻的情况,用户体验依旧很差。

  2022年开始,以ChatGPT为主的大模型将客户联络带入了全新的发展阶段。大模型可以在多轮对话的基础上,联系上下文,给用户更准确的回答。在用户多次询问无果的时候,可以直接转接人工进行处理,前期的对话内容也会进行转接,用户无需再次重复自己的问题。这种客服对话流程的无缝衔接,极大地提升了用户体验和服务效率。 大模型和知识图谱相互结合有助于构建更强大、智能和具有综合理解能力的人工智能系统。天津大模型应用案例

天津大模型应用案例,大模型

    大模型知识库系统作为一种日常办公助手,慢慢走入中小企业,在体会到系统便利性的同时,一定不要忘记给系统做优化,为什么呢?

1、优化系统,可以提高系统的性能和响应速度。大型知识库系统通常包含海量的数据和复杂的逻辑处理,如果系统性能不佳,查询和操作可能会变得缓慢,影响用户的体验。通过优化系统,可以提高系统的性能和响应速度,减少用户等待时间,增加系统的吞吐量和并发处理能力。

2、优化系统,可以提升数据访问效率。大型知识库系统中的数据通常以结构化或半结构化的形式存在,并且可能需要进行复杂的查询和关联操作。通过优化存储和索引结构,以及搜索算法和查询语句的优化,可以加快数据的检索和访问速度,提升数据访问效率。

3、优化系统,可以实现扩展和高可用性:随着知识库系统的发展和数据量的增加,系统的扩展性和高可用性变得至关重要。通过采用分布式架构和负载均衡技术,优化数据的分片和复制策略,可以实现系统的横向扩展和容错能力,提高系统的可扩展性和可用性。 广州客服大模型产品介绍当前的电商营销方式有数据营销、搜索引擎营销、社交媒体营销、视频营销、内容营销、KOL营销等方式。

天津大模型应用案例,大模型

与传统的智能客服相比,大模型进一步降低了开发和运维成本。以前,各种场景都需要算法工程师标注数据以训练特定任务的模型,因此开发成本较高。现在,大模型本身的通用性好,不再需要很多算法工程师标数据,可以直接拿过来用,有时稍微标几条数据就够了。企业部署外呼机器人、客服系统的成本会降低。原有30个话术师的工作量,现在2人即可完成,而且语义理解准确度从85%提升至94%。

杭州音视贝科技公司的智能外呼、智能客服、智能质检等产品通过自研的对话引擎,拥抱大模型,充分挖掘企业各类对话场景数据价值,帮助企业实现更加智能的沟通、成本更低的运营维护。

人工智能大模型是指具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。这些模型通常在各种领域,例如自然语言处理、图像识别和语音识别等,表现出高度准确和泛化能力。数据是大模型的基石,没有大量的数据,就无法训练出大模型。数据的质量和数量决定了大模型的性能和效果。大模型通常使用海量的标注或未标注的数据进行预训练,以学习数据的分布特征,并提取出高级的抽象特征表示,有助于解决高维数据的建模和特征提取问题。预训练是指在一个通用的任务上,使用大量的数据,训练一个大模型,使其学习到数据的通用特征和知识,然后在一个特定的任务上,使用少量的数据,微调一个大模型,使其适应任务的特殊需求。预训练的好处是可以利用数据的共性,提高模型的泛化能力,减少模型的训练时间,提升模型的效果。例如,在自然语言处理领域,大模型如BERT、GPT-3等,使用了数十亿到数万亿的文本数据进行预训练,学习了语言的语法、语义、逻辑和常识等知识,形成了一个通用的语言模型,可以用于各种下游的自然语言任务,如文本分类、文本生成、文本理解、文本摘要、机器翻译、应答系统等。大模型技术的前沿动态不容错过,把握行业发展趋势。

天津大模型应用案例,大模型

大模型智能应答除了在电商和金融领域外,在教育、医学和法律咨询方面也有不错的表现:

在教育领域,大模型智能应答可以为学生提供个性化的学习辅助。学生通过提问的方式获取知识点的解释、例题的讲解等,系统根据学生的学习情况和特点,推荐适合的学习资源,帮助学生提高学习成绩。

在医学领域,大模型智能应答用于辅助医生进行诊断。医生可以向系统提问医学知识与医护方案等问题,系统根据大量的医学知识和临床经验给出回答,帮助医生提高诊断的准确率,减轻工作压力。

在法律领域,大模型智能应答可以用于法律咨询和法律事务处理。用户通过系统获得法律法规、案例解析、合同条款等知识,以及基于法律知识和判例数据库的问题答案,可以帮助法律工作者提升个人能力。 大模型内容生成让自动化创作成为可能,极大提升了内容生产效率。天津大模型应用案例

从大模型应用案例中,我们看到AI在医疗、金融等多个领域的巨大潜力。天津大模型应用案例

互联网的发展进步使我们进入到了一个全新的内容创作时代,而人工智能的技术创新又使内容创作有了强有力的工具。其中,基于大模型的人工智能生成内容逐渐成为主流,伴随着与各个行业领域的融合,应用越来越广。

AIGC的主要技术是利用深度学习模型,通过大量的数据训练,让机器学习到某种特定的规则和模式,从而生成符合用户要求的内容。在这个过程中,数据的采集和处理十分重要,能够保证大模型学习内容的丰富性和准确性。

大模型AIGC在与各个行业业务系统相融合的过程中,生成了多种智能化管理工具与办公工具,帮助企业提升工作协同效率与团队管理水平,主要包括智能行政助理、智能决策辅助、智能内部沟通、智能团队协作、智能人力资源等。 天津大模型应用案例

    杭州音视贝科技有限公司成立于2020年3月,专注于智能语音、智能客服、AI机器人呼叫、大模型等产品的研发和运营,将人工智能技术与企业服务场景深度融合,为企业提供营销、服务、运营、管理一站式智能化解决方案,助力企业实现业务智能化升级,降本增效,挖掘更多的营销价值。音视贝坚持科学发展理念,拥有多年人工智能与企业服务相关产品研发和商业化经验,在音视频互动领域有长期的技术创新和商业实践能力,已成功累积了运营商、互联网、金融、出行、电商、教育、机构等多个行业领域的成功案例。未来,音视贝将进一步探寻人工智能技术的创新发展,提供更有价值,更符合各行业发展方向的智能交互产品,帮助更多企业和机构实现客服业务的低成本、高效率运营。