您好,欢迎访问

商机详情 -

大模型架构

来源: 发布时间:2024年05月04日

大模型智能应答在教育、医学、法律领域中的应用主要表现在:

1、教育在教育领域,大模型智能应答可以为学生提供个性化的学习辅助。学生通过提问的方式获取知识点的解释、例题的讲解等,系统根据学生的学习情况和特点,推荐适合的学习资源,帮助学生提高学习成绩。

2、医学在医学领域,大模型智能应答用于辅助医生进行诊断。医生可以向系统提问医学知识与医护方案等问题,系统根据大量的医学知识和临床经验给出回答,帮助医生提高诊断的准确率,减轻工作压力。

3、法律在法律领域,大模型智能应答可以用于法律咨询和法律事务处理。用户通过系统获得法律法规、案例解析、合同条款等知识,以及基于法律知识和判例数据库的问题答案,可以帮助法律工作者提升个人能力。 大模型和知识图谱相互结合可以实现知识增强、上下文关联、可解释性和增强技能等优势。大模型架构

大模型架构,大模型

本地知识库通常包含一个结构化的数据库,里面存储了各种类型的知识,运用大模型构建本地知识库,原理是将预训练的语言模型与知识图谱相结合,将输入的自然语言问题转化为对知识库的查询问题,并利用知识图谱中的实体、属性和关系进行推理。

在智能办公与文档管理方面,大模型本地知识库可强化知识检索、知识推送与互动、文档自动生成FAQ、格式多样化等能力,还可以提供个性化推荐服务,有力提升企业行业知识获取与分析的能力,提高团队合作水平,进而提高企业实力,更好地实现战略目标。 大模型架构降低运营成本。大模型智能客服能够提供智能住户服务、智能工作辅助、智能特色社区等卓有成效的解决方案。

大模型架构,大模型

    现在各行各业都在接入大模型,让自家的产品更智能,但事实情况真的是这样吗?

  事实是通用性大模型的数据库大多基于互联网的公开数据,当有人提问时,大模型只能从既定的数据库中查找答案,特别是当一个问题我们需要非常专业的回答时,得到的答案只能是泛泛而谈。这就是通用大模型,对于对数据准确性要求较高的用户,这样的回答远远不能满足要求。根据摩根士丹利发布的一项调查显示,只有4%的人表示对于ChatGPT使用有依赖。

   有没有办法改善大模型回答不准确的情况?当然有。这就是在通用大模型的基础上的垂直大模型,可以基于大模型和企业的个性化数据库,进行私人定制,建立专属的知识库系统,提高大模型输出的准确率。实现私有化部署后,数据库做的越大,它掌握的知识越多、越准确,就越有可能带来式的大模型应用。

    大模型具有以下几个特点:1、更强的语言理解能力:大模型通常具有更多的参数和更深层的结构,从而具备更强的语言理解和表达能力。它们可以更好地理解复杂的句子结构、上下文和语义,并生成更准确、连贯的回答。2、更***的知识储备:大模型通常通过在大规模的数据集上进行训练,从中学习到了更***的知识储备。这使得它们可以更好地回答各种类型的问题,包括常见的知识性问题、具体的领域问题和复杂的推理问题。3、更高的生成能力:大模型具有更强的生成能力,可以生产出更丰富、多样和富有创造性的文本。它们可以生成长篇连贯的文章、故事、代码等,并且在生成过程中能够考虑上下文和语义的一致性。4、训练过程更复杂、耗时更长:由于大模型的参数量庞大,训练过程更为复杂且需要更长的时间。大模型通常需要使用大规模的数据集和更多的计算资源进行训练,这意味着需要更多的时间、计算资源和成本才能达到比较好效果。5、训练过程更复杂、耗时更长:由于大模型的参数量庞大,训练过程更为复杂且需要更长的时间。大模型通常需要使用大规模的数据集和更多的计算资源进行训练,这意味着需要更多的时间、计算资源和成本才能达到比较好效果。 当前的电商营销方式有数据营销、搜索引擎营销、社交媒体营销、视频营销、内容营销、KOL营销等方式。

大模型架构,大模型

对于企业的人力资源业务,借助先进的人工智能技术,尤其是大模型AIGC,可以使其与艺术和心理学相结合,这样不仅可以帮助团队内部更好地建立信任,也能够使员工更深度理解企业的愿景和价值观,从而有效提升员工的积极性和心理健康状态。通过这样的方式,企业可以在人力资源管理中得到更好的成效。

首先,在当前的招聘环境中,大模型AIGC可以通过学习和分析大量的简历和求职信,有效地筛选出合适的人才,并可以通过虚拟面试等方式对候选人进行评估,提高招聘效率和准确性。其次,大模型AIGC可以有效地自动化人事管理流程,节省人力和时间成本,并提高工作效率。

大模型AIGC还可以为企业的人力资源部门提供评估员工表现的工具,以便更好地了解员工的工作表现和绩效。通过大模型AIGC的数据分析和人工智能技术,企业可以更加准确地识别和理解员工的优点和缺点,从而制定更加个性化的激励和培训计划,提高员工的工作满意度和忠诚度。” 音视贝在智能呼叫中心的基础上制定了大模型解决方案,为医保局提供来电数据存储分析、智能解答等新型工具。大模型架构

企业办公智能化水平的提高有助于提高员工的工作效率和积极性,为日后的经营发展提供可持续的推动力。大模型架构

    大模型技术架构是一个非常复杂的生态系统,涉及到计算机设备,模型部署,模型训练等多个方面,下面我们就来具体说一说:

1、计算设备:大型模型需要强大的计算资源,通常使用图形处理器GPU(如NVIDIA型号RTX3090、A6000或Tesla系列,32G以上的内存,固态硬盘,多核处理器和能从云端快速下载数据集的网络等。

2、模型训练平台:为加速模型训练和优化,需要使用高度优化的训练平台和框架。常见的大型深度学习模型训练平台有TensorFlowExtended(TFX)、PyTorchLightning、Horovod等。

3、数据处理:大型深度学习模型需要大量的数据进行训练和优化,因此需要使用高效的数据处理工具和平台。常见的大数据处理平台有ApacheHadoop、ApacheSpark、TensorFlowDataValidation、ApacheKafka、Dask等。

4、模型部署和推理:部署大型深度学习模型需要高效的硬件加速器和低延迟的推理引擎,以提供实时的响应和高效的计算能力。

5、模型监控和优化:大型模型的复杂性和规模也带来了许多挑战,如如模型收敛速度、模型可靠性、模型的鲁棒性等。因此,需要使用有效的监控和优化技术来提高模型的稳定性和性能。 大模型架构