敞开式断路器监测功能特性◆具备声纹振动、电流波形、行程曲线、压力变化等记录及展示,自动计算峰值电流、电流上升速率、动作时间、动作时长、行程、动/静触头分/合闸位置和次数等参数。◆IED/主机支持多通道监测数据的实时同步采集,通道数不小于8个(可定制)。◆具有比对分析功能:可将现测与标准/历史的监测数据进行横向/纵向比对分析。◆具有断电不丢失存储数据、复电自启动、自复位的功能,可连续实时监测、存储及导出1000次以上断路器动作数据。◆断路器每次动作后,IED/主机主动评估断路器运行状态,并自动上传分析结果。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:接近1时,被测设备是接近正常状态。接近0时,被测设备是可能存在故障的异常状态。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的安全性设计。振动声学指纹在线监测工作环境
3.2.3平台层的云服务器数据经现场传感器采集并经过IED/主机处理后,通过通信模块(4G/5G无线传输或电力光纤专网)传送至云服务器进行存储及深度计算,平台层的操控计算机(含通过IEC61850通讯管理连接的远端)可通过浏览器登录云服务器随时随地查看监测数据,对变压器进行运行监测及诊断分析。云服务器采用B/S结构(浏览器/服务器模式),提供监测数据的深度计算、存储、浏览器查看等服务。
3.2GZAFV-01系统的系统架构GZAFV-01系统由感知层的声纹振动传感器、电流传感器、IED/主机,网络层的通讯管理里,平台层的数据(云)服务器、内置操控及监测数据分析软件的操控计算机、IEC61850通讯管理机等构成。 开关柜振动声学指纹在线监测系统原理杭州国洲电力科技有限公司振动声学指纹在线监测服务的快速响应机制。
6.22020年10月22日,我公司的常务副总经理胡晗先生、技术智造中心总监王国明博士以技术顾问的身份,获邀参与国网冀北电力有限公司关于智慧物联体系建设专项劳动竞赛成果评审会,会上向国网冀北公司设备运行管理领域的各位领导和**们汇报了《电力设备声纹振动监测技术的发展态势和应用前景》,并会中作为厂家**参与技术评审,荣获与会领导和**们的高度认可。
6.3 2020年8月6日,我公司荣获南方电网生产技术部的邀请作为技术合作商的**,委派研发副总经理沈佳华先生参加南方电网的生产技术部、各分省公司、南网电科院和南网数研院等部门/单位的**们出席的《公司新技术交流会议》,向与会的各位**做了《变压器振动监测技术》的专题汇报。
GIS及敞开式的隔离开关监测技术背景隔离开关在合闸位置时,隔离开关可承载线路额定电流及在规定时间内的异常电流;在分闸位置时,隔离开关的触头间有符合要求的绝缘距离和明显的断开标志,确保检修时人员和设备的安全。然而由于在材料、工艺、设计、安装等方面存在的问题,以及频繁动作时产生的电气老化、机械磨损等缺陷,GIS及敞开式的隔离开关的故障率不断升高,严重影响隔离开关和整个电力系统的安全稳定运行。因此,实施在线监测隔离开关声纹振动及驱动电机电流信号,实现隔离开关运行状态的***评价具有重要意义。杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业应用前景。
二、相关标准(遵循但不限于下列标准)2.1GB/T4208外壳防护等级(IP代码)。2.2GB/T10230.1分接开关第1部分:性能要求和试验方法。2.3GB/T10230.2分接开关第2部分:应用导则。2.4DL/T265变压器有载分接开关现场试验导则。2.5DL/T574变压器分接开关运行维修导则。2.6DL/T846.8-2017高电压测试设备通用技术条件第8部分有载分接开关测试仪。2.7DL/T860变电站通信网络和系统。2.8DL/T1430变电设备在线监测系统技术导则。2.9DL/T1432.1变电设备在线监测装置检验规范第1部分:通用检验规范。2.10DL/T1538电力变压器用真空有载分接开关使用导则。2.11DL/T1540油浸式交流电抗器(变压器)运行振动测量方法。2.12DL/T1694.2高压测试仪器及设备校准规范第2部分:电力变压器分接开关测试仪。2.13DL/T1805电力变压器用有载分接开关选用导则。2.14Q/GDW383智能变电站技术导则。杭州国洲电力科技有限公司振动声学指纹在线监测技术的用户操作指南。杭州国洲电力振动声学指纹在线监测产品参数
杭州国洲电力科技有限公司振动声学指纹在线监测技术的未来发展趋势。振动声学指纹在线监测工作环境
3.3GZAFV-01系统的监测数据信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图3.4所示。通过分解时域内典型信号区间,可有效判断OLTC驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析OLTC的运行状态。然而,以上通过典型信号分析判断OLTC的运行状态需要丰富的实践经验,为方便监测人员快速完成诊断任务,需通过多种算法更直观、准确地判断OLTC状态。GZAFV-01系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号比对等多种核心算法,实现OLTC***、有效、准确的状态诊断和早期隐患监测,降低OLTC运行的故障风险。振动声学指纹在线监测工作环境