变压器运行时,电流通过绕组时产生的电动力引起绕组振动,硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动。由于绕组导体所受电动力正比于负载电流的平方,绕组的声纹振动信号的基频为100Hz。由于变压器中磁感应强度正比于加载电压的平方,铁芯的声纹振动信号的基频也为100Hz。另外,考虑到铁芯振动的非线性特性,声纹振动信号还会包含频率为100Hz整数倍的高次谐波。当变压器的绕组变形或铁芯故障后,声纹振动信号频谱分布将发生改变,产生谐波分量。因此,信号分量可以作为区别绕组故障与铁芯故障的重要依据,采用声纹振动监测法可实现绕组及铁芯在线运行状态下的健康态势评价与故障类型诊断。GZAFV-01型声纹振动监测系统(开关设备)智能评估和故障预警。品牌振动声学指纹在线监测监测人员
从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。智能振动声学指纹在线监测监测故障杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的用户定制化服务。
六、GZAFV-01系统的技术交流与投运业绩GZAFV-01系统已成功应用于智能变电站、智慧变电站及数字化变电站等示范项目(已经投运的廊坊特高压站、济南商西站、青岛顾家站和胜利站、泰安天平站等),实现大型变压器全振动在线监测与故障诊断,有效地提高设备运行可靠性。同时,我公司积极与各科研院所(南网电科院、广西电科院、冀北电科院、山东电科院、江苏电科院、浙江电科院)、供电公司(冀北、山东、山西、江苏、宁夏等地的省检)、变压器制造商(山东电力设备制造厂、江苏华鹏变压器厂、南通的韩国晓星变压器厂、杭州钱江变压器厂等)、OLTC制造商(上海华明的遵义长征厂区、德国MR等)、变电站综合监测系统平台承建商(国网智能、南瑞科技、长园深瑞等)开展合作,不断丰富各型号变压器的声纹振动信号样本数据库。
确保采集到的振动和声学数据具有足够的准确性和分辨率,以便于识别设备的正常运行状态与异常情况,可以采取以下措施:
选择合适的传感器:根据被监测设备的特性和监测要求选择适当类型和规格的振动和声学传感器。传感器应具有高灵敏度和适当的频率响应范围。校准传感器:定期对传感器进行校准,以确保其输出与实际测量值之间的准确对应关系。优化采样频率:根据设备的动态特性和可能发生的故障类型,设置合适的采样频率,以捕捉到振动和声学信号的关键特征。减少噪声干扰:采取措施减少环境噪声和电磁干扰,如使用屏蔽电缆、设置隔振平台、选择低噪声环境进行测量等。数据预处理:采用滤波、去噪等数据预处理技术,提高信号质量,减少噪声的影响。多传感器融合:使用多个传感器并结合不同的测量位置,可以提高数据的冗余性和鲁棒性,从而增强信号的准确性。动态范围调整:根据设备的运行状态调整测量系统的动态范围,确保在设备运行在不同负载条件下都能获得清晰的信号。数据后处理和特征提取:应用高级信号处理技术,如时频分析、小波变换等,提取出反映设备状态的关键特征。 杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的智能化设计。
GZAFV-01系统的功能特点GIS在带电运行过程中除了机械故障会导致异常振动外,放电性故障(如绝缘子内部缺陷、螺丝松动、悬浮电位放电、毛刺前列放电、金属微粒放电等)也会导致声纹振动信号的产生。因此,通过深入研究GIS本体的声纹振动信号特征可发现GIS机械性故障及放电性故障,具有监测***、监测结果互相补充的特点。基于声纹振动信号的在线监测,可在GIS带电运行状态下及时发现潜在故障,并及时预警,从而延长使用寿命,提高电网运行的可靠性。我公司以声纹振动信号为主,结合电流、位移等其他参量的在线监测,开发了故障诊断算法(***软著权)并提取相关特征参量研制完成的GZAFV-01型声纹振动监测系统,适用于开关设备的带电监测(便携诊断式、手持巡检式)、在线监测(长期固定式、短期移动式)。GZAFV-01系统由声纹振动传感器(压电式加速度计)、位移传感器、电流传感器、IED(在线监测式)/主机(便携/手持式)、云服务器、通讯单元、供电单元等组件构成。杭州国洲电力科技有限公司振动声学指纹在线监测功能的高精度与可靠性。开关设备声纹振动声学指纹在线监测监测试验
GZAFV-01型声纹振动监测系统(开关设备)高效检测和设备保护。品牌振动声学指纹在线监测监测人员
GIS及开关柜的断路器监测技术的功能特性◆具备声纹振动、分/合闸线圈/储能电机电流、行程、分/合闸位置等监测功能。◆具备声纹振动、电流波形、行程曲线、压力变化记录及展示功能,自动计算峰值电流、电流上升速率、动作时间与时长、行程、分合闸位置与次数等参数。◆IED/主机支持多通道信号同步实时采集,通道数不小于8个(可定制)。◆具有比对分析功能:可将现测与标准/历史的监测数据进行横向/纵向比对分析。◆具有断电不丢失存储数据,复电自动启动/复位功能;可连续监测、存储及导出1000次以上断路器动作数据。◆断路器每次动作后,IED/主机主动评估断路器运行状态,并自动上传分析结果。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,引入互相关系数的计算,当实时采集信号包络分析曲线与正常状态包络分析曲线的互相关系数:接近1时,被测设备是接近正常状态。接近0时,被测设备是可能存在故障的异常状态。下图3.5所示为断路器典型声纹振动和储能电机电流的信号包络曲线图。品牌振动声学指纹在线监测监测人员