综上所述,采用声纹振动法监测变压器OLTC、绕组及铁芯的状态,适用于带电监测/在线监测,与变压器无电气连接而不影响正常运行,有安装方便、安全、可靠等优点。我公司结合多年技术预研储备及现场技术服务经验,成功研制出GZAFV-01型声纹监测系统,既有固定安装的长期在线监测式,也有便携式的带电监测系统及可移动的在线重症监护式。GZAFV-01系统由声纹振动传感器、驱动电机电流传感器、数据采集装置(在线监测式:IED,便携/手持式:主机;下文皆用IED/主机简称)、云服务器、通讯单元及供电单元构成;操控及监测数据分析软件结合包络分析、重合度分析、小波分析、能量分布矩阵、时域信号频谱分析等多种算法,并提取故障诊断特征参量,在线状态下实现变压器OLTC、绕组及铁芯的健康态势评价与故障类型诊断。杭州国洲电力科技有限公司的企业简介与主要技术优势。品牌振动声学指纹在线监测参数
技术背景GIS运行时,电流通过高压导体时产生的电动力引起振动,由于导体所受电动力正比于负载电流的平方,GIS本体振动产生的声纹振动信号的基频为100Hz。当存在机械故障时,声纹振动信号的频谱分布将发生改变,产生谐波分量。GIS本体机械型缺陷主要是指内部存在开关触头接触异常、导电杆接触不良、母线卡簧松动、屏蔽罩松动等异常时,在交变电场作用下发生异常振动,长期振动可能导致导电杆和绝缘件松动,易造成绝缘事故。异常振动还可能造成SF6气体泄漏,损坏绝缘子和绝缘支柱,影响外壳接地牢固,危及GIS运行安全。专注振动声学指纹在线监测案例杭州国洲电力科技有限公司振动声学指纹在线监测技术的环保效益分析。
1.1公司概述杭州国洲电力科技有限公司,成立于2013年5月,是专注于综合智慧能源服务领域内发、输、变、配、用、储等全过程的电力设备参量监测、数据分析和状态评价技术的研、产、销、服四位一体的****,致力于为领域内各科研院所、专业院校、设备管理、工程服务、电能生产、设备制造等合作方提供质量的体系化技术方案。我公司于2014年把研发部、生产部和技术服务部融合打造成“技术智造中心”,并在中心组建了专注于局部放电和声纹振动监测技术的两大课题组,成功研制出自主知识产权的、先进的局部放电和声纹振动监测技术。我公司的技术近10年在投运站场、制造厂区的电力设备上大量的持续运用,为电网的可靠运行提供了逐年增长的技术支持,特别是在变压器(电抗器)、开关设备和输电设备等电力设备的绝缘、机械的状态分析与诊断方面,凭借前沿的软/硬件技术与先进的监测方法,为电力设备的高效运检提供了质量的体系化技术方案。
3.3.1.1信号包络分析为提高在线监测的准确度,GZAFV-01系统的IED/主机通常采用高采样率获取声纹振动及驱动电机电流的信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此采用小波变换和希尔伯特变换结合的信号包络分析。声纹振动和电流的信号包络分析如下图3.5所示。
3.3.1.2信号包络重合度比对分析如下图3.6所示,信号包络分析后可快速实现历史信号重合度比对分析,更直观地判断OLTC运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算。当实时采集的与正常状态的信号包络互相关系数:◆接近1时,OLTC接近正常运行状态。◆接近0时,OLTC可能存在故障。 杭州国洲电力科技有限公司振动声学指纹在线监测功能的远程监控能力。
七、GZAFV-01系统的售后技术培训与服务体系我公司拥有多名从事电力设备运行态势监测及诊断技术的*****和管理人员,均具有深厚的技术底蕴和丰富的现场电气作业经验;并拥有完善的售后服务管理体制。
现场作业组织架构图7.1技术培训关于在线监测型的GZAFV-01系统的现场电气作业,我公司为GZAFV-01系统组建现场作业项目部的电气作业工程师负责安装、调试、投运直至验收通过,并在作业现场对GZAFV-01系统的功能、指标和注意事项进行详细的技术培训。 杭州国洲电力科技有限公司振动声学指纹在线监测技术的用户操作指南。便携式声纹振动声学指纹在线监测以客为尊
杭州国洲电力科技有限公司振动声学指纹在线监测技术的科研合作背景。品牌振动声学指纹在线监测参数
从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。品牌振动声学指纹在线监测参数