AFV信号分析法是一种基于振动信号监测的OLTC(有载分接开关)状态诊断技术。其**原理是利用AFV(Acoustic Frequency Vibration)传感器采集变压器箱壁上的振动信号,通过分析信号的时域、频域特征,判断OLTC的运行状态。OLTC在切换过程中,内部机构(如触头、弹簧、传动装置)的运动会产生机械冲击和摩擦振动,这些振动信号通过静触头或变压器油传递至箱壁。由于不同故障(如触头磨损、弹簧老化、电弧放电)会导致振动特征的变化,因此AFV信号分析法能够有效识别OLTC的早期故障,为预防性维护提供依据。杭州国洲电力科技有限公司振动声学指纹在线监测技术的市场推广策略。电抗器振动声纹监测系统组件
AFV 信号分析法为 OLTC 的状态监测提供了一种精细、高效的途径。OLTC 在运行过程中,触头的分 / 合操作频繁,这对其内部结构的稳定性提出了极高要求。触头的任何异常变化,如接触不良、磨损加剧等,都会在 AFV 信号中留下痕迹。当触头接触不良时,电流通过时会产生不稳定的电弧,这不仅会导致触头进一步损坏,还会使 OLTC 的振动特性发生***改变。AFV 传感器能够敏锐捕捉到这些信号变化,经过数据分析处理,我们可以清晰地判断出 OLTC 的故障状态,为设备的安全运行保驾护航。杭州高压开关振动声纹监测技术说明GZAFV-06T型便携式变压器声纹振动 监测与诊断系统相关标准。
OLTC故障模式:传动轴断裂、选择开关触头接触不良、操控机构失灵造成的拒动和滑档现象、限位开关失灵、切换开关拒切、中止或动作滞后、内部紧固件松动和脱落、以及内部渗漏等。机械故障是OLTC的主要故障类型,它可损坏OLTC和变压器,影响电力系统的正常安全运行并造成严重后果。因此对OLTC带电运行中的机械性能进行在线监测,可预知故障可能性和判别故障类型,对电力系统安全运行具有重要的现实意义。
变压器故障中有40%的事故是由于OLTC故障引起的。目前对OLTC状态监测采用的是停电检修的方式,根据一定的状态检修周期,对OLTC进行大规模的部件检查、清洗和更换,但是停电检修存在着以下很明显的缺陷:◆必须中断供电,影响同户用电,造成一定的经济损失。◆在状态检修周期间隔阶段,OLTC的故障不易发现,引起供电事故的可能性大。◆传统停电检修方式对OLTC工作顺序发生变化的故障无法监测,如切换开关等部件的动作顺序和时间配合是否正确,以及切换过程是否存在卡塞和触头切换不到位等。
运用 AFV 信号分析法判断 OLTC 的状态,需要关注 OLTC 振动信号的多维度特征。OLTC 切换时产生的振动信号,其频率、幅值、相位等特征都与设备的运行状态密切相关。例如,当 OLTC 出现触头磨损故障时,振动信号的频率分布会发生变化,高频成分会增多;幅值也会随着磨损程度的加深而增大。同时,信号的相位可能会发生偏移,这反映了内部机械结构的相对位置变化。通过对这些多维度特征的综合分析,我们可以更加准确地判断 OLTC 的故障类型和状态,为设备的维修和保养提供更***的信息,确保电力系统的可靠运行。GZAFV-01型声纹振动监测系统(变压器、电抗器)的智能评估和故障预警。
OLTC动作时,典型声纹振动和驱动电机电流的信号如下图3.4所示。通过分解时域内典型信号区间,可有效判断OLTC驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析OLTC的运行状态。然而,以上通过典型信号分析判断OLTC的运行状态需要丰富的实践经验,为方便监测人员快速完成诊断任务,需通过多种算法更直观、准确地判断OLTC状态。GZAFV-01系统结合基于小波变换及希尔伯特变换的包络分析、基于互相关系数的重合度分析、基于小波多分辨率分解的能量分布曲线分析、基于时频分布矩阵的信号比对等多种核心算法,实现OLTC***、有效、准确的状态诊断和早期隐患监测,降低OLTC运行的故障风险。GZAFV-06T型便携式变压器声纹振动 监测与诊断系统结构。断路器振动监测厂家地址
杭州国洲电力科技有限公司有哪些声学指纹振动监测产品?电抗器振动声纹监测系统组件
AFV 信号分析法的关键在于准确监测 OLTC 的 AFV 信号,从而获取其状态数据和工作模式。OLTC 切换时产生的脉冲冲击力,如同设备运行状态的 “信使”,通过变压器油和静触头传递到变压器箱壁,形成具有特定特征的振动信号。我们利用 AFV 传感器对这些信号进行采集和分析,能够获取 OLTC 的切换时间、触头状态等重要信息。当 OLTC 出现触头磨损故障时,其振动信号的频谱会发生明显变化,某些特定频率的幅值会增大。通过对这些信号特征的识别和分析,我们可以迅速判断出 OLTC 的故障类型,为设备的维护和检修提供明确方向。电抗器振动声纹监测系统组件