OLTC的振动信号主要通过两种路径传播:一是通过静触头的机械连接直接传递至变压器外壳;二是通过变压器油的声波传导。这两种路径的信号特征有所不同,静触头传递的信号通常包含高频成分(如触头撞击),而油中传播的信号则以中低频为主(如机械共振)。AFV信号分析法需结合多传感器布置,以捕捉不同频段的振动信息,从而提高故障诊断的准确性。例如,触头接触不良会导致高频振动能量增加,而弹簧弹性下降则可能引起低频振动幅值的变化。GZAFV-01型声纹振动监测系统(变压器、电抗器)专业设计和性能优化。振动商家
AFV 信号分析法的关键在于准确监测 OLTC 的 AFV 信号,从而获取其状态数据和工作模式。OLTC 切换时产生的脉冲冲击力,如同设备运行状态的 “信使”,通过变压器油和静触头传递到变压器箱壁,形成具有特定特征的振动信号。我们利用 AFV 传感器对这些信号进行采集和分析,能够获取 OLTC 的切换时间、触头状态等重要信息。当 OLTC 出现触头磨损故障时,其振动信号的频谱会发生明显变化,某些特定频率的幅值会增大。通过对这些信号特征的识别和分析,我们可以迅速判断出 OLTC 的故障类型,为设备的维护和检修提供明确方向。振动声纹试验方法杭州国洲电力科技有限公司的企业愿景与使命。
AFV 信号分析法在 OLTC 状态监测中的应用,基于对其内部故障与振动特性关系的深入研究。OLTC 内部触头在长期使用过程中,由于机械磨损和电气腐蚀,会出现接触电阻增大、触头压力不均匀等问题。这些问题会导致 OLTC 在切换时产生的脉冲冲击力发生变化,进而影响其振动特征。例如,当触头接触电阻增大时,切换瞬间产生的电弧能量增加,引起的振动信号幅值也会相应增大。通过 AFV 传感器对这些振动信号的监测和分析,我们可以准确判断 OLTC 是否存在触头相关故障,为设备的可靠运行提供有力保障。
GZAFV-01T子系统的原理◆监测原理OLTC在切换的过程中伴随着机械振动,在线监测技术主要利用AFV和驱动电机电流的信号分析法综合对OLTC状态进行诊断。根据AFV信号波谱的异常分析其状态,结合驱动电机电流分析技术,监测能够覆盖档位联接、时间序列、控制继电器、驱动电机、制动器、润滑、线性、电弧、过热和焦炭、电气节点磨损、过渡阻抗等11个项目。较传统停电检修方式,在线监测法针对的故障类型更加***,而且在带电运行时也能够迅速有效反映OLTC运行状态。声学指纹振动监测产品有哪些?
AFV信号分析法AFV信号分析法是采用AFV传感器监测AFV信号,获得OLTC的状态数据和工作模式,从而对其状态进行判断的方法。OLTC在切换时,其内部主要机构部件的运动撞击和摩擦都会产生脉冲冲击力,该信号会通过静触头或变压器油传到变压器箱壁上。传到变压器外壳上的振动是内部多种激励现象的响应,包含着大量的设备机械状态数据。OLTC的故障类型与其振动特性的变化存在着紧密关系,通过对AFV信号的监测和诊断,即可判断出OLTC切换时间的变化、触头接触不良、触头磨损、弹簧弹性下降和电弧等故障,从而可以诊断出OLTC处于正常状态或是故障状态。触头在分/合的切换过程中,由于伴随着机械、化学、头材料消耗,造成触头凹凸不平和变形,从而引起触头压力接触电阻和开矩参数的变化,使得OLTC的振动特征也随之改变。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的多功能集成。杭州国洲电力振动欢迎来电
杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的安全性设计。振动商家
AFV 信号分析法基于对 OLTC 振动特性的研究来判断其状态。OLTC 内部触头在频繁的分 / 合切换过程中,由于机械应力、化学腐蚀以及触头材料的消耗,不可避免地会出现凹凸不平和变形的情况。这种变化直接导致触头压力、接触电阻和开矩参数发生改变,进而使得 OLTC 的振动特征产生明显变化。比如,触头磨损严重时,振动信号的高频成分会增加,信号的稳定性变差。通过 AFV 传感器持续监测这些振动特征的改变,我们就可以准确判断 OLTC 是否处于故障状态,及时采取相应措施,保障电力系统的稳定运行。振动商家