您好,欢迎访问

商机详情 -

GIS振动声学指纹在线监测厂家现货

来源: 发布时间:2024年08月22日

功能特性◆IED/主机具备多个点位开展实时连续性或周期性的监测GIS本体声纹振动信号,向平台层操控计算机传送监测数据开展智能分析,操控及监测数据分析软件实时展示分析结果和预警信息。◆具有比对分析功能:可将现测的与同规格被试品/历史的监测数据进行横向/纵向比对分析。◆具有断电不丢失存储数据、复电自动启动/复位功能,可连续实时监测、存储及导出1年以上数据。◆具备声纹振动信号时域波形展示、频谱分析(基频为100Hz)功能,可自动提取峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量,以作为GIS运行状态分析参数,用户可设置报警阈值。◆智能分析:依托于我公司建立的海量典型故障案例的数据库,包络分析后可快速实现历史信号重合度比对开展智能分析,更直观、快速地判断电力设备运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算,当实时采集信号包络曲线与正常状态包络曲线的互相关系数:振动声学指纹监测技术的应用意义。GIS振动声学指纹在线监测厂家现货

GIS振动声学指纹在线监测厂家现货,振动声学指纹在线监测

软件界面4.1远端后台软件管理远端后台管理软件通过云服务器账户登录,选择管理对象。图164.2设备信息管理设备信息管理界面包括设备名称、位置、编号等基本信息。图17电力设备监测及诊断技术的“中国智造者”第19页共29页4.3主界面软件主界面包括项目管理、多通道信号同步显示、分析及其他工具及基本分析结果显示,可实现信号包络、重合度对比、能量分布、时频分布(ATF)等分析。图184.4包络分析振动声学指纹及驱动电机电流信号的包络分析可简化信号,直观反映设备运行状态。图19电力设备监测及诊断技术的“中国智造者”第20页共29页4.5历史数据对比实现正常状态信号与实时采集信号对比、历史数据横向纵向对比。图204.6频谱分析进行振动声学指纹地时域信号频谱分析,提取信号频域特征参量。图21电力设备监测及诊断技术的“中国智造者”第21页共29页4.7运行状态告警设备异常状态报警,可选择告警发送方式。图224.8报表生成功能目标变压器/电抗器诊断结果生成报表功能。图23GIS振动声学指纹在线监测厂家现货GZAF-1000T系列变压器(电抗器)振动声学指纹监测设备信息管理。

GIS振动声学指纹在线监测厂家现货,振动声学指纹在线监测

4.1.6通过绕组及铁芯声纹振动信号频谱分析可自动识别峰值频率偏移及谐波增量,实时分析绕组及铁芯运行状态。4.1.7具有自动绘制声纹振动和电流信号的历史数据曲线趋势功能。4.1.8阈值超限告警功能:实时分析信号发展趋势,实现阈值超限自动告警,支持短信发送告警信息。4.1.9智能分析功能:软件内置典型故障特征的数据库,可与监测数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新监测数据,方便后期横向、纵向比较;可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的变压器监测数据曲线进行比对分析。4.1.10具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。

1.1公司概述杭州国洲电力科技有限公司,成立于2013年5月,是专注于综合智慧能源服务领域内发、输、变、配、用、储等全过程的电力设备参量监测、数据分析和状态评价技术的研、产、销、服四位一体的****,致力于为领域内各科研院所、专业院校、设备管理、工程服务、电能生产、设备制造等合作方提供质量的体系化技术方案。我公司于2014年把研发部、生产部和技术服务部融合打造成“技术智造中心”,并在中心组建了专注于局部放电和声纹振动监测技术的两大课题组,成功研制出自主知识产权的、先进的局部放电和声纹振动监测技术。我公司的技术近10年在投运站场、制造厂区的电力设备上大量的持续运用,为电网的可靠运行提供了逐年增长的技术支持,特别是在变压器(电抗器)、开关设备和输电设备等电力设备的绝缘、机械的状态分析与诊断方面,凭借前沿的软/硬件技术与先进的监测方法,为电力设备的高效运检提供了质量的体系化技术方案。GZAF-1000S系列高压开关振动声学指纹监测系统--敞开式断路器监测功能特性。

GIS振动声学指纹在线监测厂家现货,振动声学指纹在线监测

时频能量分布矩阵(ATF图谱)获取振动声学指纹信号时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于有载分接开关正常状态与异常状态对比。下图12为正常状态下振动声学指纹信号时频能电力设备监测及诊断技术的“中国智造者”第14页共29页量矩阵。图12振动声学指纹信号时频能量矩阵绕组及铁芯运行状态分析下图13(a)为变压器/电抗器运行时的绕组及铁芯振动声学指纹的时域信号。为更直观地分析绕组及铁芯运行状态,采用频域法分析振动声学指纹信号,实现在线状态下的故障监测。如下图13(b)所示,基于振动声学指纹信号的频域分布,提取峰值频率、总谐波畸变率、基频能量比、互相关系数特征参量,以作为变压器/电抗器运行状态的分析参数。GZAF-1000T系列变压器(电抗器)振动声学指纹监测云平台服务器。GIS振动声学指纹在线监测厂家现货

GZAF-1000T系列变压器(电抗器)振动声学指纹监测系统结构。GIS振动声学指纹在线监测厂家现货

从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。GIS振动声学指纹在线监测厂家现货