您好,欢迎访问

商机详情 -

江西自制智能采摘机器人品牌

来源: 发布时间:2025年12月05日

采摘机器人的应用正从实验室和温室,逐步走向更广阔的田间与果园,其形态与功能也因作物和场景而异。在高度结构化的环境中,如无土栽培的温室或垂直农场,机器人效率比较高。例如,用于采摘串收番茄或甜椒的机器人,可以沿着预设轨道在作物行间移动,环境可控、果实位置相对规律,能实现接近90%的识别率和24小时连续作业,极大缓解了季节性用工荒。对于大田作物,如西兰花或生菜,已有大型自主平台配备激光切割头,能一次性完成识别和收割。相当有挑战的是传统果园场景。为适应机器人采摘,农业本身正在进行一场“农艺革新”,即发展“适宜机械化的种植模式”。例如,将果树修剪成整齐的“墙式”或“V字形”树冠,使果实更暴露、更规整。针对苹果、柑橘等高大乔木,出现了多自由度机械臂与升降平台结合的移动机器人,如同一个缓慢移动的“钢铁摘果工”。而对于草莓、蘑菇等低矮作物,机器人多采用低底盘、多臂协同的设计,像一群精细的“地面收集者”。在葡萄园,用于酿酒葡萄采收的大型震动式机器人已成熟应用,但鲜食葡萄的无损采摘仍是难题。每种场景的适配,都意味着机器人硬件、软件与农艺知识的深度耦合。科技场馆中,熙岳智能的采摘机器人成为科普展示的明星产品,普及农业智能技术。江西自制智能采摘机器人品牌

智能采摘机器人

智能采摘机器人搭载多光谱摄像头,可识别果实成熟度。多光谱摄像头作为机器人的 “眼睛”,能够捕捉可见光和不可见光范围内的多种光谱信息,覆盖从紫外线到近红外的波段。不同成熟度的果实,在这些光谱下会呈现出独特的反射、吸收和透射特性。例如,成熟的苹果在近红外光谱下反射率较高,而未成熟的苹果反射率较低。机器人通过分析多光谱图像数据,结合预先训练好的算法模型,能够快速且地判断果实是否达到采摘状态。这种技术不避免了人工判断的主观性和误差,还能在复杂光照条件下保持稳定的识别效果,有效提升了采摘果实的品质和一致性,极大减少了因采摘过早或过晚造成的损失。江西自制智能采摘机器人品牌熙岳智能智能采摘机器人的研发投入持续增加,不断突破技术瓶颈。

江西自制智能采摘机器人品牌,智能采摘机器人

识别之后,采摘本身是一项对精细度要求极高的机械艺术。机器人的“手”——末端执行器,其设计直接关系到采摘的成功率与果实的商品价值。针对番茄这种皮薄多汁的浆果,执行器必须兼具力度精细与动作柔和。常见的设计包括带有柔软衬垫的仿生夹爪,能自适应包裹果实形状,通过传感器反馈实现毫牛顿级的力度控制,在紧握与损伤间找到完美平衡。另一种主流方案是采用吸盘式执行器,利用负压吸附住果实表面,尤其适合从复杂缝隙中提取番茄。无论哪种方式,通常都配合一个精密的旋转或剪切机构,模仿人类手腕的“捻转”动作,干净利落地分离果柄,避免生拉硬拽对藤蔓造成伤害。这只“灵巧之手”在几秒内完成的,是力学、材料学与仿生学协同的结晶。

第三代采摘机器人的突破在于云端学习网络。每个机器人的操作数据(如不同光照下番茄识别误差、雨天抓取力度调整记录)都会上传至算法池。通过强化学习,系统能自主优化采摘策略:澳大利亚的荔枝采摘机器人经过300小时训练后,对遮挡果实的采摘速度提升40%。更令人惊叹的是跨作物迁移学习能力,一个在苹果园训练的模型,需少量标注数据就能适应梨园的采摘任务。农场主可通过平板电脑输入“优先采收向阳面果实”等自然语言指令,系统会自动调整作业逻辑。这些机器人还会预测作物生长趋势,建议比较好采收时间窗,成为真正的农田智能体。


熙岳智能智能采摘机器人的云端管理平台,可同时监控多台设备的作业状态。

江西自制智能采摘机器人品牌,智能采摘机器人

智能采摘机器人的出现缓解了农业劳动力短缺问题。随着城镇化进程加快,农村青壮年劳动力大量涌入城市,农业劳动力短缺问题日益严峻,尤其在果实采摘高峰期,用工难、用工贵成为困扰果园经营者的难题。智能采摘机器人的诞生为这一困境提供了有效解决方案。一台智能采摘机器人每小时的作业量相当于 5 - 8 名人工,且可 24 小时不间断工作。在新疆的棉花采摘季,以往需要数千名拾花工耗时数月完成的采摘任务,如今通过智能采摘机器人组成的作业团队,可在数周内高效完成。此外,机器人操作简单,经过短期培训的普通工人即可进行管理和维护,无需依赖专业的采摘技能。智能采摘机器人不填补了劳动力缺口,还降低了果园对季节性劳动力的依赖,保障了农业生产的稳定性和可持续性,推动农业向现代化、智能化方向发展。熙岳智能智能采摘机器人可通过太阳能充电模块,进一步延长户外作业时间。江西自制智能采摘机器人品牌

熙岳智能智能采摘机器人的机身设计符合人体工程学,方便操作人员近距离维护。江西自制智能采摘机器人品牌

采用 AI 视觉算法,能快速定位目标果实的生长位置。AI 视觉算法赋予了智能采摘机器人强大的环境感知和目标识别能力。它基于深度学习的卷积神经网络(CNN),通过对海量果园图像数据的学习,能够准确区分果实、枝叶、背景等元素。当机器人进入果园作业时,摄像头采集到的图像信息会实时传输至算法模块,算法会对图像进行特征提取、目标检测和定位。在复杂的果园环境中,即便果实被茂密的枝叶遮挡,AI 视觉算法也能通过分析部分可见特征,结合空间几何关系,快速推算出果实的完整位置。此外,该算法还具备自适应能力,能随着作业环境的变化和数据积累不断优化,从而实现对目标果实位置的快速、定位,为后续的采摘动作提供准确引导。江西自制智能采摘机器人品牌