柔性机械臂模拟人类采摘动作,轻柔摘取果实避免损伤。柔性机械臂是智能采摘机器人实现精细作业的关键部件,它借鉴了人体手臂的结构和运动原理,采用柔性材料和特殊的驱动方式。机械臂的关节部分具有多个自由度,能够像人类手臂一样灵活弯曲和伸展,模仿人类采摘时的伸手、抓取、扭转等动作。在抓取果实时,机械臂内置的压力传感器会实时感知抓取力度,并根据果实的种类、大小和成熟度自动调整力度,确保在抓取牢固的同时不会对果实表皮造成挤压、划伤等损伤。例如,对于娇嫩的葡萄,机械臂会以极轻柔的力度包裹抓取;对于苹果等相对坚硬的果实,力度也会控制。这种模拟人类采摘动作的柔性机械臂,不提高了采摘的成功率,还能有效保护果实品质,减少因损伤导致的果实腐烂和经济损失。其研发的智能采摘机器人,在现代农业园区中发挥着重要作用,助力农业高效生产。天津智能采摘机器人功能
利用图像识别技术区分病果与健康果实。智能采摘机器人搭载的图像识别技术,依托深度学习算法与高分辨率摄像头构建起强大的果实健康检测系统。其内置的卷积神经网络(CNN)模型,经过海量的病果与健康果实图像数据训练,能够识别果实表面的病斑、腐烂、虫害痕迹等特征。以苹果为例,系统不能识别常见的轮纹病、炭疽病在果实表面形成的不规则斑块,还能通过分析果实颜色分布、纹理变化,检测出肉眼难以察觉的早期病变。在实际作业中,摄像头以每秒 20 帧的速度采集果实图像,图像识别算法在毫秒级时间内完成分析,若判断为病果,机械臂将跳过该果实或将其单独分拣,避免病果混入健康果实中,保障采摘果实的整体品质。经测试,该技术对病果的识别准确率高达 97%,有效降低了因病果混入导致的产品质量风险与经济损失。浙江智能智能采摘机器人功能熙岳智能科技在机器人的软件系统开发上投入大量精力,使操作更加便捷高效。
基于深度学习技术,机器人可不断优化采摘效率。深度学习技术为智能采摘机器人的性能提升提供了强大动力。机器人在采摘作业过程中,会不断收集各种数据,包括采摘环境信息、果实特征数据、自身操作动作和相应的采摘结果等。这些海量的数据被传输至机器人的深度学习模型中,模型通过复杂的神经网络结构对数据进行分析和学习。在学习过程中,模型会不断调整内部参数,寻找的决策策略和操作模式,以提高采摘的准确性和效率。例如,通过对大量采摘数据的学习,模型可以发现不同光照条件下果实识别的参数,或者找到在特定地形下机械臂运动的快捷路径。随着作业时间的增加和数据积累的增多,深度学习模型会不断进化和优化,使机器人的采摘效率逐步提升,作业表现越来越出色。这种基于深度学习的自我优化能力,让智能采摘机器人能够不断适应变化的作业环境,持续保持高效的工作状态。
可根据果实生长高度自动调节机械臂升降。智能采摘机器人的机械臂升降系统集成了激光测距传感器、倾角传感器和伺服电机驱动装置。激光测距传感器实时扫描果实与机械臂末端的垂直距离,当检测到果实生长位置变化时,将数据传输至控制系统。控制系统结合预先设定的果实高度范围,通过伺服电机精确调节机械臂各关节的角度,实现机械臂的自动升降。在柑橘园中,不同树龄的柑橘树果实生长高度差异较大,从 1 米到 3 米不等,机器人可在 0.5 秒内完成机械臂高度的调整,确保末端执行器始终处于采摘位置。此外,该系统还具备防碰撞功能,当机械臂在升降过程中检测到障碍物时,会立即停止运动并重新规划路径,避免损坏机械臂和果实。通过自动调节机械臂升降,智能采摘机器人能够适应不同高度的果实采摘需求,提高作业的灵活性和效率。按照作物商品性特点,熙岳智能的采摘机器人采用按串采收方式,提高采摘质量。
其作业效率是人工采摘的 5 - 8 倍,大幅提升产能。在规模化种植的柑橘园中,人工采摘平均每人每天可收获 800 至 1000 公斤果实,而智能采摘机器人凭借高速机械臂与识别系统,每小时可完成 1200 至 1500 公斤的采摘量,单日作业量可达 8 至 10 吨,相当于 8 至 10 名熟练工人的工作量。在新疆的红枣种植基地,面对成熟期集中、采摘周期短的难题,10 台智能采摘机器人组成的作业团队,3 天内即可完成 500 亩红枣园的采摘任务,较传统人工采摘提前 20 天完成,有效避免因成熟过度导致的果实脱落损失。此外,机器人可 24 小时不间断作业,配合自动分拣系统,形成采摘、分拣、装箱一体化流程,进一步压缩生产周期,助力果园实现产能翻倍。熙岳智能为采摘机器人配备柔性采摘手,通过自适应控制完成果蔬采摘位置抓取,且不伤果。山东自动智能采摘机器人按需定制
熙岳智能在智能采摘机器人领域不断创新,农业科技发展新潮流。天津智能采摘机器人功能
与物联网结合,实现果园采摘的智能化管理。智能采摘机器人与物联网技术深度融合,将果园内的各种设备和系统连接成一个智能网络。机器人通过传感器实时采集果实生长数据、自身作业状态数据,并将这些数据上传至云端管理平台。同时,果园中的气象站、土壤监测仪、灌溉系统、施肥设备等也与平台相连,形成数据共享。管理者在管理平台上,可通过可视化界面实时查看果园的整体情况,如根据机器人采集的果实成熟度数据,结合气象信息,安排采摘时间;依据土壤监测数据和机器人的作业进度,远程控制灌溉、施肥系统。在江西的脐橙园中,通过物联网智能化管理,采摘效率提升 30%,水肥资源利用率提高 40%,实现了果园生产的精细化、智能化和高效化。天津智能采摘机器人功能