具有避障功能,遇到障碍物时自动绕行继续作业。智能采摘机器人配备了多种传感器,如激光雷达、超声波传感器、视觉摄像头等,这些传感器协同工作,构建起的环境感知系统。当机器人在果园中移动和作业时,传感器会实时扫描周围环境,检测是否存在障碍物,如树木、石头、沟渠等。一旦检测到障碍物,机器人的控制系统会立即启动避障程序。首先,根据传感器获取的障碍物位置、形状和大小等信息,运用路径规划算法重新计算出一条安全的绕行路径。然后,机器人会按照新规划的路径自动调整行进方向,避开障碍物,继续执行采摘任务。在绕行过程中,传感器会持续监测周围环境,确保在遇到新的障碍物或环境变化时,能够及时再次调整路径。这种高效的避障功能使智能采摘机器人能够在复杂的果园环境中自由穿梭,有效避免碰撞和损坏,保障了机器人的安全运行和采摘作业的连续性。针对番茄果实坐果范围,结合温室番茄种植农艺,熙岳智能采用水平和升降平台,拓展机器人工作范围。海南菠萝智能采摘机器人供应商
配备自动充电装置,续航不足时自动返回充电站。智能采摘机器人配备的自动充电装置使其具备自主能源管理能力。机器人内置的电量监测系统会实时监控电池电量状态,当电量下降到预设的阈值,如 20% 时,机器人会立即启动自动返回充电站的程序。在返回过程中,机器人依靠自身的导航系统,结合激光雷达扫描的地形信息和预先规划的路径,避开障碍物,沿着路线快速、准确地回到充电站。充电站采用先进的无线充电或接触式充电技术,当机器人到达充电站指定位置后,充电装置会自动对接并开始充电。整个充电过程无需人工干预,并且充电效率高,能够在较短时间内为机器人充满电量。充满电后,机器人会根据当前的采摘任务情况,自动返回作业区域继续工作。这种自动充电机制确保了机器人能够在果园中持续稳定地运行,避免了因电量不足导致的作业中断,极大地提高了采摘作业的连续性和效率。湖北梨智能采摘机器人熙岳智能在智能采摘机器人的研发中,注重多技术融合,提升机器人综合性能。
具备低温耐寒设计,能在冬季果园正常工作。智能采摘机器人针对低温环境进行了的优化设计。其电池采用低温性能优异的锂电池,内置加热系统,当环境温度低于 0℃时,加热系统自动启动,将电池温度维持在适宜的工作范围,确保电池性能稳定。电子元件均采用耐低温型号,并进行灌封处理,防止低温下水汽凝结导致短路。机械部件采用特殊的润滑油和密封材料,在 - 20℃的低温环境下仍能保持良好的润滑性和密封性,避免因部件冻结而影响机器人运行。在东北的苹果梨园中,冬季气温常低至 - 15℃,配备低温耐寒设计的智能采摘机器人仍能正常完成果实采摘任务,相比人工采摘,不受寒冷天气的影响,有效延长了果园的采摘时间,保障了冬季果实的及时采收。
机械手指采用仿生材料,抓取果实稳定且不伤表皮。智能采摘机器人的机械手指采用了模仿生物组织特性的仿生材料,这种材料具有独特的物理和力学性能。它既具备一定的柔韧性和弹性,能够紧密贴合果实的表面,提供稳定的抓取力;又具有良好的耐磨性和低摩擦系数,避免在抓取过程中对果实表皮造成划伤或磨损。仿生材料内部还嵌入了微型压力传感器,这些传感器能够实时感知机械手指与果实之间的接触压力,并将数据反馈给控制系统。控制系统根据果实的种类、大小和成熟度,精确调节机械手指的抓取力度。对于表皮娇嫩的樱桃,机械手指会以极轻微的力度包裹抓取;而对于相对坚硬的椰子,抓取力度则会适当增强。通过仿生材料和智能控制系统的结合,机械手指在保证抓取稳定的同时,限度地保护了果实的完整性,有效提升了采摘果实的品质。熙岳智能研发团队不断优化机器人算法,让采摘机器人的决策更加智能。
云端数据库存储海量作物信息,辅助机器人判断。云端数据库是智能采摘机器人的 “智慧大脑”,它存储了大量关于不同作物的详细信息,包括作物的生长周期、果实形态特征、成熟度判断标准、采摘要点等数据。这些数据来自于科研机构的研究成果、农业的经验总结以及大量实际采摘作业的案例积累。当智能采摘机器人在果园作业时,遇到不同种类的作物或复杂的采摘情况,机器人会将实时采集到的图像、传感器数据等信息上传至云端数据库。云端数据库通过强大的检索和分析功能,快速匹配相关的作物信息,并将匹配结果和判断建议反馈给机器人。例如,当机器人遇到一种不常见的水果品种时,云端数据库会提供该水果的成熟度识别特征和采摘方法,帮助机器人做出判断和正确的采摘动作。这种依托云端数据库的信息支持模式,使智能采摘机器人能够应对各种复杂的作物情况,提高采摘的准确性和适应性。南京熙岳智能科技有限公司成立于 2017 年,在智能采摘机器人研发方面成果。农业智能采摘机器人私人定做
智能采摘机器人在果园中穿梭自如,这得益于熙岳智能研发的自主导航技术。海南菠萝智能采摘机器人供应商
基于深度学习技术,机器人可不断优化采摘效率。深度学习技术为智能采摘机器人的性能提升提供了强大动力。机器人在采摘作业过程中,会不断收集各种数据,包括采摘环境信息、果实特征数据、自身操作动作和相应的采摘结果等。这些海量的数据被传输至机器人的深度学习模型中,模型通过复杂的神经网络结构对数据进行分析和学习。在学习过程中,模型会不断调整内部参数,寻找的决策策略和操作模式,以提高采摘的准确性和效率。例如,通过对大量采摘数据的学习,模型可以发现不同光照条件下果实识别的参数,或者找到在特定地形下机械臂运动的快捷路径。随着作业时间的增加和数据积累的增多,深度学习模型会不断进化和优化,使机器人的采摘效率逐步提升,作业表现越来越出色。这种基于深度学习的自我优化能力,让智能采摘机器人能够不断适应变化的作业环境,持续保持高效的工作状态。海南菠萝智能采摘机器人供应商