您好,欢迎访问

商机详情 -

贵州移动目标检测

来源: 发布时间:2026年01月09日

物联网与人工智能的融合是一个多维度的技术整合过程,涉及数据的收集、分析和智能决策。这一融合的基础在于如何有效地利用物联网设备收集的海量数据,并借助人工智能技术进行深入分析和应用。物联网设备,包括各种传感器和执行器,是数据收集的前线。它们能够实时监测环境参数、设备状态和用户行为,生成大量数据。这些数据是后续分析和决策的基础。人工智能在数据分析方面的能力是其与物联网融合的关键。通过机器学习和深度学习算法,可以从物联网设备收集的数据中识别模式、预测趋势和发现异常。这些分析结果为智能决策提供了依据。有没有RK3588的目标检测AI模块。贵州移动目标检测

目标检测

无人机的智能化是推动低空经济发展的重要引擎,打造智能无人机需要通信、控制、传感器等多种技术的共同作用,其中图像处理板的目标检测识别技术能够在智慧巡检、智慧交通管理、智慧河湖巡查等领域有着积极作用。在成都慧视开发的多款图像处理板中,Viztra-LE026以小型化、低功耗的特点深受行业青睐。Viztra-LE026图像处理板采用了全国产化芯片RV1126,板卡外形呈圆形设计,尺寸为Φ38mm*12mm,重量12g,虽然小巧,但是算力可达2.0TOPS,能够凭借1路MIPI视频输入和1路DVP视频输入实现对目标实时自主检测、识别,并自动或手动锁定跟踪人、车、船等目标。安徽无线目标检测设备SpeedDP可以用在打造目标检测算法模型。

贵州移动目标检测,目标检测

YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。

首先摄像机采用的是可见光高清摄像机,具备1920*1080的分辨率,系统视场31.11°×17.8°,其中搜索视场15.8°×15.8°(1080P像素)。而图像处理则采用慧视开发的RV1126高性能图像处理板,之所以采用这块板卡,一方面得益于其低功耗、微型外观的设计,非常契合“智慧眼”这样对于空间要求严格的应用场景;另一方面RV1126具备2.0TOPS的算力,在国产化方面也十分完整,安全性十足。两者结合,就能够形成重量不超过100g的“智慧眼”。在算法的作用下,能够达到≥50Hz的跟踪帧率,≥25Hz的检测帧率,实现捕获4m*4m目标超过800m、6m*6m目标超过1000m。这就是“机器狼”的智慧化措施,通过一个“小小的”“智慧眼”的加入,便能够让其实现许多自动化任务。随着技术的不断发展,“机器狼”的形态将会不断进步,满足更多多样化需求。慧视开发的RK3588能够提供6T算力用于检测。

贵州移动目标检测,目标检测

无人机是巡检领域的空中巡检员,搭载智慧“眼”的无人机能够替代人工,实现自主巡检。无人机可以搭载红外光和可见光两种传感器,实现昼夜巡检也不是梦,一基杆塔*用十分钟的时间便可完成巡检工作。例如在电力巡检中,传统模式下,工人只能采用望远镜远程查看线路,不仅费眼睛,还费时间。同时,由于光线等外界因素的干扰,缺陷的确认也加大了难度,不得不背着安全带近距离校验,工人的安全也受到威胁。而无人机则可以在发现缺陷后,通过抵近观察的方式进行仔细查看,收集缺陷周围360°照片回去分析,不仅安全也高效率。慧视Viztra-LE048能够用于复杂环境的目标检测。新疆运动目标检测

如何提升RV1126AI模块的检测精度。贵州移动目标检测

机器人是AI落地应用的一个很重要载体,AI赋能的机器人能够在安防巡检、自动化作业、应急救援等领域发挥重要作用。在电力巡检当中,传统的模式需要人工一步一步走出来,面对假设在各种环境中的输电线,这种模式弊端重重,费时费力。而常年经受风吹雨晒的输电线,在使用久了之后,难免会出现电力设备损坏缺失等问题,AI赋能下的机器人的出现,为这项行业的工作效率的提升提供了新思路。巡检机器人内置可见光和红外摄像头,能够实现昼夜巡检,然后再内置高性能的AI图像处理板,就能够运用AI识别、多机协同、数字孪生、巡检监控等技术,实现自动巡视、缺陷和表计自动识别和告警、巡视报表自动生成和发送等功能,实现场站式巡检场景的全息感知和全域决策辅助。贵州移动目标检测