您好,欢迎访问

商机详情 -

山东目标检测经验丰富

来源: 发布时间:2025年08月28日

多目标跟踪是指在连续的图像中,通过目标检测算法识别出每一帧中的目标,并在时间上跟踪它们的位置和状态。但目标会不断发生尺度、形变、遮挡等变化,而且还会有目标出现和消失的情况,再加上视频采集端的相机所处环境可能受到外界影响导致抖动的情况(例如无人机高空检测),就会给多目标跟踪造成一定的困难。由于我们不能控制目标,所以只能从视频采集端维护跟踪的稳定性。因此,成都慧视针对于多目标检测跟踪抖动丢失的优化方法是:1.改进目标检测,使用更加鲁棒的目标检测算法。2.增强特征描述,利用深度学习提取更高级别的语义特征,这些特征对于小范围内的视角变化具有更好的不变性3.改进运动模型,在算法中加入对摄像头运动的估计,通过补偿摄像头运动来减小目标真实运动与预测之间的差距。4.数据关联策略,设计更灵活的数据关联算法,允许更大的距离阈值来匹配候选目标。图像识别检测能够弥补雷达检测的不足。山东目标检测经验丰富

目标检测

许多小型化的无人机飞行器等类似于昆虫小动物,凭借其机动、灵活、体积小的特点能够在复杂的环境中执行飞行任务。但是再精细化的操控,也难以做到完全避免障碍物的阻碍,因此需要采用AI避障的功能。AI避障中很重要的一点是要对环境进行自动化的识别。利用高性能的AI图像处理板,再定制化目标识别检测的算法,通过对这类无人机作业环境的大量深度学习,就能够让无人机AI愈发聪明,能够快速识别摄像头范围内的物体,从而实现避障的操作。吉林企业目标检测产品无人机巡检可以用成都慧视开发的RK3588图像处理板。

山东目标检测经验丰富,目标检测

成都慧视推出的深度学习算法开发平台SpeedDP,它的主要功能就是帮助进行算法模型的测试验证,进行快速的针对大量数据的AI自动标注,然后提升自身算法能力。在无人机智能炮弹测试验证中,通过对原始算法的模型训练,能够不断评估算法的能力,然后对新的打击数据集目标进行AI自动标注,让算法在学习中不断变得聪明。通过SpeedDP的应用,能够极大减少整个测试验证所需时间,减少人力成本支出,减少项目开发周期,让工程师不再为繁琐的图像标注浪费时间将更多的精力放在更重要的领域。

无人机主导下的低空经济在物流运输、应急救援、智能巡检、农林植保等领域有着突出应用,而在辅助无人机进行运转的设备中,吊舱很重要。无人机吊舱中集各类传感器于一体,能够在无人机执行任务时,实时识别画面中的物体,帮助操控者进行信息收集,做出判断。而为了让无人机进一步智能化,慧视光电通过在吊舱中植入高性能的图像处理板,来实现AI和无人机的有机结合。这就是慧视VIZ-GT05V三轴双可见光惯性稳定吊舱,它搭载一颗千万级可见光CMOS传感器和一颗星光级可见光CMOS传感器,具备大小两个视场角,能够实时输出1080P的高清可见光视频,可实现夜间微弱光线下的目标观测。FPV检测识别可以搭载成都慧视开发的RV1126图像处理板。

山东目标检测经验丰富,目标检测

传统的除草模式采用人工割草或者撒农药,这些模式繁琐,效率不高,并且农药对土地的污染也会很严重。于是机器人智能除草的产品被研发应用,哈工大机器人实验室与华工科技合作研发的一台全天候智能激光除草机器人,就以“环境零污染、土地零破坏、昼夜作业”为目标。激光除草是通过激光照射杂草,使草叶内部细胞脱水破裂死亡的物理靶向除草方法。哈工大机器人实验室与华工科技合作研发的全天候智能激光除草机器人集成深度学习的人工智能技术,AI智能识别杂草,十分高效;同时针对性开发先进的多目标靶点定位及动态时延误差补偿算法,不仅能够准确高效识别杂草和高精度定位目标分生组织,同时不损伤作物、不污染土壤、不耗费人力,而且适应性强,生产效率高,促进农业经济高质量发展。成都慧视开发的图像处理板可以进行AI目标检测。青海可靠目标检测

无人机AI检测能够比人更快发现火源。山东目标检测经验丰富

在如今的作业中,无人机路面巡查替代传统的人工巡查,展现出巨大的效率优势。像高速施工工地这样的环境下,施工方为了保障施工安全,就需要对施工范围进行严格管控,传统的人工巡查效率低,受限于地形、时间等问题,容易出现盲点。相比人工,利用无人机进行AI识别则可以逐帧图像监测,即便是夜晚也能够利用红外传感器进行数据收集,几乎不会遗漏任何信息。而交通管理部门,则可以利用无人机快速到底事故地点进行疏导,缓解交通压力。山东目标检测经验丰富