无人机只需要从基地起飞,就能够对指定区域进行巡检,智能摄像头能够自动问诊地面,识别护栏错位、路面积水、凹陷、裂缝、交通事故、车流异常等问题,然后标记位置。而控制中心能够实时查看前方画面,接收无人机回传的数据,并进行诊断分析,整个过程无需过多的人工干预。这种无人机智能问诊,是通过向无人机植入高性能的AI图像处理板以及定制专门的目标识别算法来实现的。成都慧视开发的Viztra-LE026图像处理板,就非常适合用在无人机智能化领域。这块板卡外形呈圆形设计,尺寸为ф38*12mm,功率不超过4W,整体呈现功耗低、尺寸小的特点。用在紧凑型的无人机当中也不会因为空间问题而苦恼,并且不会过多消耗无人机的续航。此外,Viztra-LE026这款图像处理板采用的是RV1126芯片,2.0TOPS的算力用在路面识别领域十分合适。成都慧视可以定制USB接口的RK3588图像处理板。辽宁RK3399处理板图像识别模块电子元器件
无人机夜间工作时需要依靠红外机芯进行高清成像,而想要具备AI检测识别的能力则可以通过植入图像处理板。成都慧视可以根据需求提供整套的建设方案,实现快速集成开发。慧视Viztra-LE026图像处理板+MiNO 17红外机芯的组合方案,两款产品均使用小巧设计,整体组合重量在30g左右,并且都采用小功耗设计,用在无人机领域不会过多增加负担。在算法的赋能下,能够实现稳定的目标检测识别。Viztra-LE026图像处理板重量在10g左右,采用了瑞芯微全国产化芯片RV1126,能够输出2.0TOPS的算力,功耗不高于4W。能够以30Hz帧率跟踪像素2*2的目标,能够识别像素为12*12的目标,且识别率高于85%。而MiNO 17红外机芯重量在20g左右(净重5g(不含镜头)),像素分辨率为640*512,采用9/13/25mm三种定焦设计,支持18中伪彩选择,功耗小于0.75W。福建RK3399处理板图像识别模块电子元器件利用RK3588开发而成的Viztra-HE030图像处理板;
美国再度要求台积电停止出口7纳米芯片给大陆,目前看来国产AI图像处理的性能还得由RK3588稳坐,不久前传出了瑞芯微RK3688至少在一两年内无法推出,因此对于许多有高性能AI图像处理板需求的客户无需再等了。当下,选择RK3588至少还可以保持性能***两三年,而在国内进行RK3588开发的厂家中,成都慧视凭借多年的丰富经验,已经形成一整套快速的开发流程,针对于RK3588这样的高性能图像处理板,能够快速定制SDI、CVBS、DVP、Cameralink等接口,满足不同行业的需求。并且,随着不少领域等目标跟踪稳定性的进一步提升,针对于高帧频目标跟踪这块,成都慧视也完成了成熟的方案,通过RK358+FPGA,实现高帧频相机的输入输出,为目标跟踪提供更多的细节信息。
这个过程中,采用无人机是个高效的办法。无人机高空观察能够获得更多的视野,并且针对许多人无法到达的地方,还能够快速抵近观察,防止惊扰。此外,更高效的措施是在无人机上加装具备图像处理的板卡,这时候无人机就是一个智慧眼,它能够在算法的辅助下,对野猪等动物进行AI搜寻,并且具备目标锁定功能。当无人机发现疑似目标就可以抵近观察,一旦确认目标就能够立即锁定跟踪,这样,地面围剿人员就可以快速像区域靠拢,对野猪进行逮捕驱逐。这样的无人机智慧眼可以用成都慧视开发的Viztra-HE030图像处理板来实现,这块板卡采用瑞芯微旗舰级芯片RK3588,算力能够达到6.0TOPS,处理村落、树林等复杂环境不在话下。同时,针对于野生动物目标识别算法的AI训练,成都慧视还可以提供专门的AI训练平台SpeedDP,通过大量的模型训练实现AI自动图像标注,进而帮助提升算法识别性能。RK3588是目前国产图像处理板的性能数一数二存在。
图像标注广泛应用于智能驾驶、安防巡检、应急救援等领域。尽管社会为领域培养了大量的图像标注人才,但是人工的弊端仍无法完全弥补。近些年随着AI技术的不断发展,机械化的图像标注工作迎来了改变契机,许多利用AI进行图像标注的平台面向大众,成都慧视推出的SpeedDP深度学习算法开发平台就是利用AI训练、部署实现自动化图像标注。它的出现,极大地改变了图像标注行业的现状。传统标注和AI标注的不同在于传统的图像标注需要人工肉眼判断目标,然后进行手动拉框,如此反复。这是一个机械化的动作,久而久之便会使图像标注员产生倦怠,从而影响效率。此外,面对复杂背景下,目标数量众多、重叠等情况,人工拉框也很无力。越高性能的图像处理板越能处理复杂的场景。云南人脸识别图像识别模块供应商
图像识别需要图像处理板的硬件支持;辽宁RK3399处理板图像识别模块电子元器件
图像标注就是给图像打上标签标记,例如矩形框等形式,在以前,需要招聘专门的图像标注师,随着AI的不断发展,这个行业正发生翻天覆地的变化。人工智能利用计算机和机器模仿人类思维来解决问题或制定决策。深度学习是人工智能的子领域,深度学习算法模型由神经网络组成。通过学习样本数据的特征表达以及数据分布来实现能够像人一样具备分析和识别目标的能力。目前,有许多功能性AI工具可以帮助我们进行图像标注,有的是纯手动拉框,有的则可以帮助我们进行自动标注。辽宁RK3399处理板图像识别模块电子元器件