在算法领域,实现小目标的识别则需要一些特殊的算法。无人机执行任务时飞在高空,地面的物体就会显得较小,小目标通常指图像中像素面积小于32*32的物体,一般的AI算法难以实现精细锁定跟踪。要解决这个难题,慧视光电的算法工程师给出了小目标识别算法的方案,通过加强目标特征、数据增广、放大输入图像、使用高分辨率的特征、设计合适的标签分配方法,以让小目标有更多的正样本、利用小目标所处的环境信息或者其他容易检测的物体之间的关系来辅助小目标的检测。此外,利用自研的深度学习算法开发平台,通过不断的深度学习,能够让AI更加精细的识别目标。这个方法在瑞芯微RK3588、RV1126、RK3399pro等系列图像跟踪板上得到了较好地验证。矿山监控目标识别找慧视光电来做。贵州省时省力目标识别经验丰富
物联网与人工智能的融合是一个多维度的技术整合过程,涉及数据的收集、分析和智能决策。这一融合的基础在于如何有效地利用物联网设备收集的海量数据,并借助人工智能技术进行深入分析和应用。物联网设备,包括各种传感器和执行器,是数据收集的前线。它们能够实时监测环境参数、设备状态和用户行为,生成大量数据。这些数据是后续分析和决策的基础。人工智能在数据分析方面的能力是其与物联网融合的关键。通过机器学习和深度学习算法,可以从物联网设备收集的数据中识别模式、预测趋势和发现异常。这些分析结果为智能决策提供了依据。浙江高性能目标识别开发慧视光电开发的图像处理板可以用于目标识别。
成都慧视推出的深度学习算法开发平台SpeedDP,它的主要功能就是帮助进行算法模型的测试验证,进行快速的针对大量数据的AI自动标注,然后提升自身算法能力。在无人机智能炮弹测试验证中,通过对原始算法的模型训练,能够不断评估算法的能力,然后对新的打击数据集目标进行AI自动标注,让算法在学习中不断变得聪明。通过SpeedDP的应用,能够极大减少整个测试验证所需时间,减少人力成本支出,减少项目开发周期,让工程师不再为繁琐的图像标注浪费时间将更多的精力放在更重要的领域。
此前,九号电动车的自平衡技术一次次刷新人们的认知,而其中一款探索版车型,甚至加入了智能摄像头,能够识别行人、障碍物,自动规划行驶路线,达成自动驾驶的目的。很多人好奇这种怎么做到的,其实很简单,车辆内部摄像头安装了具备图像处理的传感器。这种传感器就是图像处理板,这类AI板卡在目标识别算法的赋能下,就能够对视野范围的物体进行AI分类识别,从而帮助车辆进行避障。像成都慧视开发的高性能AI图像处理板Viztra-HE030,采用的是RK3588开发而成,凭借其工业级的性能,6.0TOPS的算力,就能够在车辆行驶过程中的复杂环境下进行周边环境的快速AI识别分类。当然,算法的能力也十分关键,由于车辆行驶环境的不断变化,算法面临的识别画面也不断变化,如何精细的进行识别,关系到车辆的行驶安全。无人机双光吊舱用目标识别图像处理板找成都慧视。
高空坠物已经成为城市安全的一大威胁,一方面来自于人,而另一方面则来自于建筑物。以前的楼房大都是马赛克墙面,然后在外面再涂一层亚士漆作为保护,随着楼房建成年份变久,楼房的外立面历经风吹雨晒,就会出现、起壳、空鼓、渗水等迹象。传统的检查模式,需要“蜘蛛人”进行排查,这种方法费时费力,准确度也难以控制。无人机和吊舱的出现则有效解决了这一难点。无人机搭载吊舱,对大楼进行细致的扫描,就能够将建筑外墙的情况尽收眼底,就像给大楼拍CT一样。这种吊舱需要具备红外热成像的功能,通过太阳照射墙面的温度,捕捉肉眼不可见的隐患,如果外墙存在缺陷,则会呈现“热斑”和“冷斑”两种形态。搭载吊舱的无人机一二十分钟就能检查完一面墙,效率是人工远远无法企及的。监控摄像头目标识别慧视可以做。贵州流畅目标识别情况
无人机识别图像处理板找慧视做。贵州省时省力目标识别经验丰富
无人机在军备领域有着突出作用,它不仅能帮助进行信息侦查,还能进行智能炮弹高空精细打击。其中,在智能精细打击领域,少不了人工智能的参与。通过人工智能的控制分析,能够实现对打击目标的AI识别。选择这样的方式,能够减少末端打击时对方电子干扰的影响,尽可能保证无人机的重复使用,图像处理设备显然比无人机本身更加经济。除了硬件方面,要实现这样的精细打击,算法的能力至关重要。在实际应用落地之前就需要大量的模拟试验来验证算法的识别能力,这个过程周期不可估量。传统方式下,需要大量的外场测试验证,整个流程繁琐费时费力。而这个工具的出现,则很好的优化了这个过程。贵州省时省力目标识别经验丰富