您好,欢迎访问

商机详情 -

重庆图形图像识别模块设备

来源: 发布时间:2024年04月21日

RV1126图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标检测及跟踪算法。具有体积小、功耗低、目标检测准确、跟踪稳定等优点。用在无人机领域,不会过多增加无人机载重负担。软件方面,在此基础上定制板卡的处理能力,其中:可见光通道图像处理能力:1920×1080不低于30Hz红外通道图像处理能力:640×512不低于50Hz图像跟踪模块在对目标尺寸不小于3×3像素、目标对比度不小于10%,双振幅不小于2/3视场,作往复匀速直线运动的模拟目标进行跟踪时,其跟踪速度在水平方向和垂直方向均不小于1.5视场/s。对圆周半径不小于1/3视场,作匀速圆周运动的模拟目标进行跟踪时,其跟踪速度应不小于1.5周/s。识别像素不低于15×15像素,识别频率≥10Hz。并且植入视频压缩存储功能,高清视频存储能力不低于1h,以满足特殊需求。无人机吊舱能够通过定制算法和精细定位技术实现农药精细喷洒、农作物精细抛粮等操作。重庆图形图像识别模块设备

图像识别模块

随着技术的不断迭代发展,人工智能应用已潜移默化的深入到人们的日常生活中,智能图片搜索、人脸识别、指纹识别、扫码支付、视觉工业机器人、辅助驾驶等图像视频识别产品正在深刻改变着传统行业。而这些功能实现的背后,都要依赖于人工智能数据的标注。但是如果遇到数据量庞大的标注需求,传统的人工标注就显得费时费力,会影响整个项目的进度。慧视SpeedDP是针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视SpeedDP开发平台支持本地化服务器部署,数据敏感的用户也无需担心数据信息泄露的问题。福建RK3399处理板图像识别模块高性能主板板卡定制选成都慧视。

重庆图形图像识别模块设备,图像识别模块

对进销存、订货、选品、商业选址都很有帮助。大数据预测的算法会根据近几年的数据,加上天气、节日、时间段的影响,机器就可以处理进销存的订货、研究用户的消费行为,对未来的选品和定价都非常有帮助。图像识别、声音识别、数字化人工智能算法三大技术只能搭起机器识别的骨架,但如何让零售变的更加智能,还需要更深层次的技术做支持,如何在表层技术的基础上进行更深层次的剖析,是现在智能零售业急需解决的问题,下面我们就智能零售中运用比较多的技术——图像识别技术进行简要的解析。

随着网购的不断兴盛,物流企业之间逐渐“卷”起来了,通过智慧物流的建设,来提升自家物流速度、物流服务体验,以获得更多的市场青睐。与传统物流不同,智慧物流让物流系统通过传感器获取各种末端信息,然后将信息通过互联网传输到数据中心进行相应存储和处理,进而指挥各个物流环节执行相应操作,高效整合、调度和管理各类物流资源,为各参与方提供应用服务。从功能框架看,智慧物流主要包括智能感知、智能决策、智能执行三大模块。从技术框架看,智慧物流主要包括智能运输、智能仓储、智能配送、智能包装、智能装卸、智能信息处理六个方面。要想实现这些功能,智能化图像处理板能够提供巨大帮助。慧视光电开发的智能图像处理板在定制化的算法赋能下,能够进行自主化的目标检测识别。在智慧物流领域,能够帮助企业实现很多智能化、无人化场景。图像识别模块监控预警系统是防溺水技防手段中应用比较广的。

重庆图形图像识别模块设备,图像识别模块

图像识别技术在可以被广泛应用之前,一个重要的挑战是,怎样才能知道一个模型对未曾出现过的场景仍然具有很好的泛化能力。在目前的实践中,数据集被随机划分为训练集和测试集,模型也相应地在这个数据集上被训练和评估。需要注意的是,在这种做法中,测试集拥有和训练集一样的数据分布,因为它们都是从具有相似场景内容和成像条件的数据中采样得到的。然而,在实际应用中,测试图像或许会来自不同于训练时的数据分布。这些未曾出现过的数据可能会在视角、大小尺度、场景配置、相机属性等方面与训练数据不同。慧视光电推出的深度学习算法开发平台SpeedDP就能够通过不断的训练,达到快速图像标注的目的,让AI能够更加精确的识别目标。RK3399图像处理板识别概率超过85%。河北安防监控图像识别模块厂家

精确的远程打击可以采用慧视RK3588图像处理板。重庆图形图像识别模块设备

深度学习是机器学习的一个分支,只在近十年内才得到广泛的关注与发展。它与机器学习不同的,它模拟我们人类自己去识别人脸的思路。比如,神经学家发现了我们人类在认识一个东西、观察一个东西的时候,边缘检测类的神经元先反应比较大,也就是说我们看物体的时候永远都是先观察到边缘。就这样,经过科学家大量的观察与实验,总结出人眼识别的模式是基于特殊层级的抓取,从一个简单的层级到一个复杂的层级,这个层级的转变是有一个抽象迭代的过程的。深度学习就模拟了我们人类去观测物体这样一种方式,首先拿到互联网上海量的数据,拿到以后才有海量样本,把海量样本抓取过来做训练,抓取到重要特征,建立一个网络,因为深度学习就是建立一个多层的神经网络,肯定有很多层。有些简单的算法可能只有四五层,但是有些复杂的,像刚才讲的谷歌的,里面有一百多层。当然这其中有的层会去做一些数学计算,有的层会做图像预算,一般随着层级往下,特征会越来越抽象。重庆图形图像识别模块设备