您好,欢迎访问

商机详情 -

医疗项目软件测试

来源: 发布时间:2025年04月24日

    每一种信息的来源或者形式,都可以称为一种模态。例如,人有触觉,听觉,视觉,嗅觉。多模态机器学习旨在通过机器学习的方法实现处理和理解多源模态信息的能力。多模态学习从1970年代起步,经历了几个发展阶段,在2010年后***步入深度学习(deeplearning)阶段。在某种意义上,深度学习可以被看作是允许我们“混合和匹配”不同模型以创建复杂的深度多模态模型。目前,多模态数据融合主要有三种融合方式:前端融合(early-fusion)即数据水平融合(data-levelfusion)、后端融合(late-fusion)即决策水平融合(decision-levelfusion)以及中间融合(intermediate-fusion)。前端融合将多个**的数据集融合成一个单一的特征向量空间,然后将其用作机器学习算法的输入,训练机器学习模型,如图1所示。由于多模态数据的前端融合往往无法充分利用多个模态数据间的互补性,且前端融合的原始数据通常包含大量的冗余信息。因此,多模态前端融合方法常常与特征提取方法相结合以剔除冗余信息,基于领域经验从每个模态中提取更高等别的特征表示,或者应用深度学习算法直接学习特征表示,然后在特性级别上进行融合。后端融合则是将不同模态数据分别训练好的分类器输出决策进行融合,如图2所示。5G 与物联网:深圳艾策的下一个技术前沿。医疗项目软件测试

医疗项目软件测试,测评

    保留了较多信息,同时由于操作数比较随机,某种程度上又没有抓住主要矛盾,干扰了主要语义信息的提取。pe文件即可移植文件导入节中的动态链接库(dll)和应用程序接口(api)信息能大致反映软件的功能和性质,通过一个可执行程序引用的dll和api信息可以粗略的预测该程序的功能和行为。belaoued和mazouzi应用统计khi2检验分析了pe格式的恶意软件和良性软件的导入节中的dll和api信息,分析显示恶意软件和良性软件使用的dll和api信息统计上有明显的区别。后续的研究人员提出了挖掘dll和api信息的恶意软件检测方法,该类方法提取的特征语义信息丰富,但*从二进制可执行文件的导入节提取特征,忽略了整个可执行文件的大量信息。恶意软件和被***二进制可执行文件格式信息上存在一些异常,这些异常是检测恶意软件的关键。研究人员提出了基于二进制可执行文件格式结构信息的恶意软件检测方法,这类方法从二进制可执行文件的pe文件头、节头部、资源节等提取特征,基于这些特征使用机器学习分类算法处理,取得了较高的检测准确率。这类方法通常不受变形或多态等混淆技术影响,提取特征只需要对pe文件进行格式解析,无需遍历整个可执行文件,提取特征速度较快。软件测试认证机构艾策纺织品检测实验室配备气候老化模拟舱,验证户外用品的耐久性与色牢度。

医疗项目软件测试,测评

    为了有效保证这一阶段测试的客观性,必须由**的测试小组来进行相关的系统测试。另外,系统测试过程较为复杂,由于在系统测试阶段不断变更需求造成功能的删除或增加,从而使程序不断出现相应的更改,而程序在更改后可能会出现新的问题,或者原本没有问题的功能由于更改导致出现问题。所以,测试人员必须进行回归测试。[2]软件测试方法验收测试验收测试是**后一个阶段的测试操作,在软件产品投入正式运行前的所要进行的测试工作。和系统测试相比而言,验收测试与之的区别就只是测试人员不同,验收测试则是由用户来执行这一操作的。验收测试的主要目标是为向用户展示所开发出来的软件符合预定的要求和有关标准,并验证软件实际工作的有效性和可靠性,确保用户能用该软件顺利完成既定的任务和功能。通过了验收测试,该产品就可进行发布。但是,在实际交付给用户之后,开发人员是无法预测该软件用户在实际运用过程中是如何使用该程序的,所以从用户的角度出发,测试人员还应进行Alpha测试或Beta测试这两种情形的测试。Alpha测试是在软件开发环境下由用户进行的测试,或者模拟实际操作环境进而进行的测试。

    [1]中文名软件测试方法外文名SoftwareTestingMethod目的测试软件性能所属行业计算机作用选择合适的软件目录1概述2原则3分类▪静态测试和动态测试▪黑盒测试、白盒测试和灰盒测试▪手动测试和自动化测试4不同阶段测试▪单元测试▪集成测试▪系统测试▪验收测试5重要性软件测试方法概述编辑软件测试方法的目的包括:发现软件程序中的错误、对软件是否符合设计要求,以及是否符合合同中所要达到的技术要求,进行有关验证以及评估软件的质量。**终实现将高质量的软件系统交给用户的目的。而软件的基本测试方法主要有静态测试和动态测试、功能测试、性能测试、黑盒测试和白盒测试等等。[2]软件测试方法众多,比较常用到的测试方法有等价类划分、场景法,偶尔会使用到的测试方法有边界值和判定表,还有包括不经常使用到的正交排列法和测试大纲法。其中等价类划分、边界值分析、判定表等属于黑盒测试方法;只对功能是否可以满足规定要求进行检查,主要用于软件的确认测试阶段。白盒测试也叫做结构测试或逻辑驱动测试,是基于覆盖的全部代码和路径、条件的测试,通过测试检测产品内部性能,检验程序中的路径是否可以按照要求完成工作,但是并不对功能进行测试,主要用于软件的验证。代码质量评估显示注释覆盖率不足30%需加强。

医疗项目软件测试,测评

    后端融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图13所示,规范化后的混淆矩阵如图14所示。后端融合模型的roc曲线如图15所示,其显示后端融合模型的auc值为。(6)中间融合中间融合的架构如图16所示,中间融合方式用深度神经网络从三种模态的特征分别抽取高等特征表示,然后合并学习得到的特征表示,再作为下一个深度神经网络的输入训练模型,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。图16中,用于抽取dll和api信息特征视图的深度神经网络包含3个隐含层,其***个隐含层的神经元个数是128,第二个隐含层的神经元个数是64,第三个隐含层的神经元个数是32,且3个隐含层中间间隔设置有dropout层。用于抽取格式信息特征视图的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,其第二个隐含层的神经元个数是32,且2个隐含层中间设置有dropout层。用于抽取字节码n-grams特征视图的深度神经网络包含4个隐含层,其***个隐含层的神经元个数是512,第二个隐含层的神经元个数是384,第三个隐含层的神经元个数是256,第四个隐含层的神经元个数是125。2025 年 IT 趋势展望:深圳艾策的五大技术突破。省级软件检测机构有多少家企业

深圳艾策信息科技:打造智慧供应链的关键技术。医疗项目软件测试

    本书内容充实、实用性强,可作为高职高专院校计算机软件软件测试技术课程的教材,也可作为有关软件测试的培训教材,对从事软件测试实际工作的相关技术人员也具有一定的参考价值。目录前言第1章软件测试基本知识第2章测试计划第3章测试设计和开发第4章执行测试第5章测试技术与应用第6章软件测试工具第7章测试文档实例附录IEEE模板参考文献软件测试技术图书3基本信息书号:软件测试技术7-113-07054作者:李庆义定价:出版日期:套系名称:21世纪高校计算机应用技术系列规划教材出版单位:**铁道出版社内容简介本书主要介绍软件适用测试技术。内容分为三部分,***部分为概念基础、测试理论的背景及发展,简要地分析了当前测试技术的现状;第二部分介绍软件测试的程序分析技术、测试技术,软件测试的方法和策略,分析了软件业在测试方面的研究成果,并总结了测试的基本原则和一些好的实践经验;第三部分介绍了两种测试工具软件——基于Windows的WinRunner和服务器负载测试软件WAS。本书结合实际,从一些具体的实例出发,介绍软件测试的一些基本概念和方法,分析出软件测试的基本理论知识,适用性比较强。医疗项目软件测试

标签: 测评