收藏查看我的收藏0有用+1已投票0软件测试技术编辑锁定讨论上传视频软件测试技术是软件开发过程中的一个重要组成部分,是贯穿整个软件开发生命周期、对软件产品(包括阶段性产品)进行验证和确认的活动过程,其目的是尽快尽早地发现在软件产品中所存在的各种问题——与用户需求、预先定义的不一致性。检查软件产品的bug。写成测试报告,交于开发人员修改。软件测试人员的基本目标是发现软件中的错误。中文名软件测试技术简介单元测试、集成测试主要步骤测试设计与开发常见测试回归测试功能测试目录1主要步骤2基本功能3测试目标4测试目的5常见测试6测试分类7测试工具8同名图书▪图书1▪图书2▪图书3▪图书4软件测试技术主要步骤编辑1、测试计划2、测试设计与开发3、执行测试软件测试技术基本功能编辑1、验证(Verification)2、确认(Validation)软件测试人员应具备的知识:1、软件测试技术2、被测试应用程序及相关应用领域软件测试技术测试目标编辑1、软件测试人员所追求的是尽可能早地找出软件的错误;2、软件测试人员必须确保找出的软件错误得以关闭。渗透测试报告暴露2个高危API接口需紧急加固。珠海软件评测中心
帮助客户提升内部技术团队能力。例如,某三甲医院在采用艾策科技的医疗信息化系统检测方案后,不仅系统漏洞率下降45%,其IT团队的安全意识与应急响应能力也提升。技术创新未来方向艾策科技创始人兼CTO表示:“作为软件检测公司,我们始终将技术创新视为竞争力。未来,公司将重点投入AI算法优化、边缘计算检测等前沿领域,为电力能源、政企单位等行业提供更高效、更智能的质量保障服务。”深圳艾策信息科技有限公司是一家立足于粤港澳大湾区,依托信息技术产业,面向全国客户提供专业、可靠服务的第三方CMACNAS检测机构。在检测服务过程中,公司始终坚持以客户需求为本,秉承公平公正的第三方检测要求,遵循国家检测标准规范,确保检测数据和结果准确可靠,运用前沿A人工智能技术提高检测效率。我们追求创造优异的社会价值,我们致力于打造公司成为第三方检测行业的行业榜样。珠海软件评测中心专业机构认证该程序内存管理效率优于行业平均水平23%。
**小化对数损失基本等价于**大化分类器的准确度,对于完美的分类器,对数损失值为0。对数损失函数的计算公式如下:其中,y为输出变量即输出的测试样本的检测结果,x为输入变量即测试样本,l为损失函数,n为测试样本(待检测软件的二进制可执行文件)数目,yij是一个二值指标,表示与输入的第i个测试样本对应的类别j,类别j指良性软件或恶意软件,pij为输入的第i个测试样本属于类别j的概率,m为总类别数,本实施例中m=2。分类器的性能也可用roc曲线(receiveroperatingcharacteristic)评价,roc曲线的纵轴是检测率(true****itiverate),横轴是误报率(false****itiverate),该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。roc曲线下面积(areaunderroccurve,auc)的值是评价分类器比较综合的指标,auc的值通常介于,较大的auc值一般表示分类器的性能较优。(3)特征提取提取dll和api信息特征视图dll(dynamiclinklibrary)文件为动态链接库文件,执行某一个程序时,相应的dll文件就会被调用。一个应用程序可使用多个dll文件,一个dll文件也可能被不同的应用程序使用。api(applicationprogramminginterface)函数是windows提供给用户作为应用程序开发的接口。
在不知道多长的子序列能更好的表示可执行文件的情况下,只能以固定窗口大小在字节码序列中滑动,产生大量的短序列,由机器学习方法选择可能区分恶意软件和良性软件的短序列作为特征,产生短序列的方法叫n-grams。“080074ff13b2”的字节码序列,如果以3-grams产生连续部分重叠的短序列,将得到“080074”、“0074ff”、“74ff13”、“ff13b2”四个短序列。每个短序列特征的权重表示有多种方法。**简单的方法是如果该短序列在具体样本中出现,就表示为1;如果没有出现,就表示为0,也可以用。本实施例采用3-grams方法提取特征,3-grams产生的短序列非常庞大,将产生224=(16,777,216)个特征,如此庞大的特征集在计算机内存中存储和算法效率上都是问题。如果短序列特征的tf较小,对机器学习可能没有意义,选取了tf**高的5000个短序列特征,计算每个短序列特征的,每个短序列特征的权重是判断其所在软件样本是否为恶意软件的依据,也是区分每个软件样本的依据。(4)前端融合前端融合的架构如图4所示,前端融合方式将三种模态的特征合并,然后输入深度神经网络,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器。深圳艾策信息科技:打造智慧供应链的关键技术。
坐标点(0,1)**一个完美的分类器,它将所有的样本都正确分类。roc曲线越接近左上角,该分类器的性能越好。从图9可以看出,该方案的roc曲线非常接近左上角,性能较优。另外,前端融合模型的auc值为。(5)后端融合后端融合的架构如图10所示,后端融合方式用三种模态的特征分别训练神经网络模型,然后进行决策融合,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,后端融合模型的准确率变化曲线如图11所示,模型的对数损失变化曲线如图12所示。从图11和图12可以看出,当epoch值从0增加到5过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率小幅提高,训练对数损失和验证对数损失缓慢下降;综合分析图11和图12的准确率和对数损失变化曲线,选取epoch的较优值为40。确定模型的训练迭代数为40后,进行了10折交叉验证实验。深圳艾策信息科技:可持续发展的 IT 解决方案。上海软件检测报告规格
艾策检测为新能源汽车电池提供安全性能深度解析。珠海软件评测中心
这样做的好处是,融合模型的错误来自不同的分类器,而来自不同分类器的错误往往互不相关、互不影响,不会造成错误的进一步累加。常见的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、贝叶斯规则融合(bayes’rulebased)以及集成学习(ensemblelearning)等。其中集成学习作为后端融合方式的典型**,被广泛应用于通信、计算机识别、语音识别等研究领域。中间融合是指将不同的模态数据先转化为高等特征表达,再于模型的中间层进行融合,如图3所示。以深度神经网络为例,神经网络通过一层一层的管道映射输入,将原始输入转换为更高等的表示。中间融合首先利用神经网络将原始数据转化成高等特征表达,然后获取不同模态数据在高等特征空间上的共性,进而学习一个联合的多模态表征。深度多模态融合的大部分工作都采用了这种中间融合的方法,其***享表示层是通过合并来自多个模态特定路径的连接单元来构建的。中间融合方法的一大优势是可以灵活的选择融合的位置,但设计深度多模态集成结构时,确定如何融合、何时融合以及哪些模式可以融合,是比较有挑战的问题。字节码n-grams、dll和api信息、格式结构信息这三种类型的特征都具有自身的优势。珠海软件评测中心