安言信息高等顾问做了《合规筑基,发展向新:ISO37301赋能企业全球治理》的主题演讲。在分享中深入剖析了全球化背景下企业面临的合规挑战。首先列举了多国数据保护、网络安全及AI相关法规,展示了合规环境的复杂性。通过全球违规案例,详细解析了数据保护缺失、法律风险评估不足等问题及其严重后果。随后,引入了ISO37301:2021合规管理体系标准,强调该标准在提升**合规管理能力、促进**贸易合作中的重要作用。还阐述了合规管理的guangfan范围,包括财务、人力、市场等多个领域,并介绍了ISO37301合规管理体系的结构,包括**情境、领导作用、策划、支持、运行、绩效评价及持续改进等关键环节。last,强调了合规义务识别与风险评估的重要性,提出将合规工作从传统的文书工作转变为数字工程,使之成为企业创新的***。严曦丹的分享为企业全球化发展中的合规治理提供了宝贵思路和实践指导。《个人信息保护法》要求处理活动严格遵循合法、正当、必要原则。上海企业信息安全供应商

《数据安全法》作为上位法,确立了数据安全管理的基本原则,而配套条例的出台则进一步细化实施路径,聚焦zheng务数据共享与跨境数据管控两大重点领域。2025年6月发布的《zheng务数据共享条例》,标志着zheng务数据共享迈入法治化新阶段,明确zheng务数据共享的目录管理、授权机制、安全责任等要求,规范跨部门数据流通,既提升zheng务服务效率,又防范数据泄露风险。2024年9月实施的《网络数据安全管理条例》,则细化了跨境数据管控规则,明确重要数据出境需通过安全评估,个人信息出境需符合标准合同、安全认证等要求,划定跨境数据流动红线。配套条例与《数据安全法》形成互补,解决了上位法原则性规定落地难的问题,为zheng务部门、企业等数据处理者提供了具体操作指引。同时,强化了不同领域数据安全的差异化管控,助力构建quan方面、多层次的数据安全治理体系。广州金融信息安全联系方式个人信息处理者需建立便捷渠道,响应用户查阅、删除等合法诉求。

金融行业网络安全合规需应对新兴技术风险,强化动态防控能力。随着生成式AI、区块链、云服务在金融领域的广泛应用,传统合规措施难以覆盖新型风险。AI建模中的训练数据版权风险、区块链jiaoyi的匿名性风险、云存储的数据zhu权风险等,都对合规管控提出新要求。金融机构需持续跟踪技术发展前沿,建立新兴技术风险监测机制,提前制定应对预案。某互联网银行通过建立AI技术安全评估体系,核查训练数据来源合法性与模型输出合规性,规避技术滥用风险。同时需加强与监管部门、行业协会的沟通,及时掌握新型合规要求,优化技术防护与管理制度,实现合规管控与技术创新的协同发展。
医疗数据匿名化处理需遵循“不可识别、不可复原”原则,平衡价值与隐私。随着医疗大数据与AI研发需求增长,数据流通与隐私保护的矛盾日益突出,匿名化成为合规解决方案。北京市发布的《健康医疗数据匿名化技术规范》明确,数据持有方需先整合治理原始数据,再结合使用场景选取适宜技术处理。常用匿名化手段包括去标识化、假名化、数据脱min等,处理后需确保无法识别特定自然人且不能复原。某胸科医院在构建肺结核CT影像数据集时,通过严格匿名化处理并完成产权登记,既保障数据科研价值,又规避隐私风险。匿名化效果需定期评估,动态优化技术方案,同时明确数据持有方、运营方、使用方的权责边界,确保数据流通全程合规,实现医疗数据价值挖掘与隐私保护的双赢。 数据安全风险评估方法论落地需开展全员培训,提升风险识别与管控能力。

数据安全风险评估方法论以GB/T45577-2025为he心,构建场景与要素双维度模型。该国家标准于2025年11月实施,填补了国内数据风险评估系统化、标准化的空白,为各行业提供统一指引。场景维度按业务场景与技术场景定制方案,跨境传输场景重点评估出境合规性,AI场景聚焦训练数据合法性,金融场景侧重交易数据完整性。要素维度覆盖数据资产、处理活动、安全措施、威胁来源四大板块,全mina拆解风险构成。相较于传统jin关注技术漏洞的评估方法,该方法论新增合规损害维度,将管理缺陷、人员违规等纳入风险源。某试点单位应用后,评估覆盖环节从3个增至7个,风险识别率提升60%,有效推动评估从被动合规向主动防控转型。个人信息出境标准合同生效后10个工作日内须向省级网信部门备案。杭州证券信息安全设计
ISO37301强调合规文化培育,推动组织形成全员参与的合规管理氛围。上海企业信息安全供应商
数据安全风险评估方法论落地并非简单照搬标准模板,而是需要深度结合企业业务场景,兼顾技术防护与管理机制的双重需求。首先,企业需依据自身业务特性选择适配的方法论,如金融机构可侧重定量分析,精zhun测算风险损失;中小企业可采用定性与定量结合的方法,平衡评估成本与效果。其次,方法论落地需打通技术与管理的壁垒,技术层面需依托漏洞扫描、流量监测等工具获取客观数据,管理层面需结合制度建设、人员培训、流程管控等措施,评估管理机制的有效性。例如,在电商企业的订单数据评估场景中,技术上需核查数据加密存储情况,管理上需审查订单查询权限审批流程,两者结合才能quan面评估风险。同时,方法论落地需避免 “为评估而评估”,需将评估结果与业务优化相结合,针对高风险环节提出可落地的整改建议,推动安全管控与业务发展协同共进。只有贴合业务场景的方法论,才能真正发挥风险评估的预警与防控作用。上海企业信息安全供应商