您好,欢迎访问

商机详情 -

上海信息安全技术

来源: 发布时间:2025年12月21日

同意动态管理:适配场景与法规变化 同意管理并非一次性操作,需建立动态调整机制。当业务场景变更(如新增数据处理目的)或法规更新时,需重新向用户获取同意,通过弹窗或站内信告知变更原因及影响,用户未明确同意前,不得开展新的数据处理活动。定期(如每年)向用户推送同意状态提醒,引导用户根据自身需求调整偏好设置,避免“一次同意终身有效”。针对长期未活跃用户(如超过6个月),在恢复服务前重新确认同意。同时,建立同意记录管理系统,留存每一次同意及变更记录,确保在监管核查时可提供完整依据,实现同意管理的全生命周期合规。ISO42001涵盖AI数据治理要求,确保人工智能应用的数据安全与隐私保护。上海信息安全技术

上海信息安全技术,信息安全

    企业网络安全培训需定期更新内容,紧跟新型攻击手段与监管政策的变化趋势。网络安全领域的攻击手段与监管环境处于持续变化中,若培训内容固化不变,员工掌握的知识技能将难以应对新的安全威胁,培训也会失去实际意义。新型攻击手段不断涌现,如AI生成式钓鱼邮件、供应链攻击等,其隐蔽性更强、危害更大,培训需及时纳入这些新型攻击的识别与防范方法。监管政策也在不断完善,如《网络数据安全管理条例》的出台,对企业数据安全管理提出了新要求,培训需及时解读相关政策,确保企业运营合规。某金融企业因培训内容未及时更新,员工仍沿用传统方法防范钓鱼邮件,未能识别出AI生成的高fang钓鱼邮件,导致客户资金信息泄露。培训内容更新需建立常态化机制,可每月收集行业内的新型安全事件与政策动态,每季度对培训内容进行梳理调整,每年开展一次quan面的内容升级。同时,可通过问卷调查、员工反馈等方式,了解员工对培训内容的需求,确保更新后的内容贴合实际。因此,定期更新内容是保持培训实效性的关键,让员工始终掌握应对新风险的知识与技能。 上海信息安全解决方案商家在全国 多个 个城市设有线下服务网点,用户可前往网点获取面对面的信息安全解决方案。

上海信息安全技术,信息安全

    人工智能应用与挑战人工智能(AI)是一门融合了计算机科学、统计学、脑神经学和社会科学的综合性学科,旨在赋予计算机类似人类的智能和能力,例如识别、认知、分类和决策。近年来,“算力×数据×算法”的协同进化,使得计算机视觉、语音识别、自然语言处理、多模态等技术领域取得了重大突破,推动了AI从实验室走向产业ge命的进程。人工智能几乎在每个行业都展现出巨大的潜力,多年前全球范围内开始高度重视AI的伦理和安全问题。专注于人工智能安全和伦理管理的**标准ISO42001:2023提供了明确指引。通过实施ISO42001,**能够系统地识别、评估和管理与AI相关的风险,确保其AI系统的开发和应用既符合伦理和法律要求,又有效保护个人隐私和数据安全。国家标准GB/T45081-2024同等采用ISO42001:2023。ISO42001简介ISO/IEC42001:2023是全球shou个可认证的人工智能管理体系**标准,适用于各类**,助力其负责任地开发、提供或使用AI系统。其he心价值在于构建系统化的AI风险管理机制,推动AI全生命周期管理,提升利益相关方的信任。该标准采用ISO高阶结构(HLS),严格遵循PDCA循环原则。ISO42001体系实施安言咨询基于20多年的咨询经验和对ISO42001标准的深刻理解。

ISO42001人工智能管理体系将AI算法透明度作为he心要求之一,针对人工智能算法“黑箱”问题提出了系统性解决方案。该标准要求组织在AI算法设计与开发过程中,采用可解释性技术,确保算法的决策逻辑、数据输入及输出结果能够被清晰追溯和解释。对于涉及公众利益的AI应用领域,如金融、医疗、教育等,算法透明度尤为重要,它不仅能够提升用户对AI系统的信任度,还能为监管部门的监督检查提供便利。通过遵循ISO42001的相关要求,组织可有效po解AI算法透明度不足的难题,保障人工智能决策过程的合规性与公正性。选择信息安全供应商时,需考察其技术实力、服务响应速度及行业案例积累。

上海信息安全技术,信息安全

    云SaaS环境下PIMS的分阶段落地需遵循“基础建设—体系完善—优化升级”的逻辑,确保每阶段目标清晰、可落地。第一阶段(基础建设阶段)聚焦数据资产梳理与合规基线搭建,需协同SaaS服务商quan面摸排数据资产,明确数据来源、类型、流转路径及存储位置,建立数据分类分级标准,区分个人敏感信息、普通个人信息与非个人信息。同时,制定隐私政策、数据处理规范等基础制度,明确数据处理的合规要求与操作流程。第二阶段(体系完善阶段)重点搭建技术管控与责任协同机制,部署权限管理、数据tuo敏、日志审计等技术工具,实现对数据处理全流程的实时监控与管控;与SaaS服务商签订数据安全协议,界定双方在数据存储、处理、备份、销毁等环节的安全责任,明确服务商的合规义务与违约赔偿机制。第三阶段(优化升级阶段)聚焦常态化合规与动态调整,建立合规评估机制,定期开展隐私风险评估与合规自查,及时发现并整改问题;结合法规更新、业务拓展及技术发展,动态优化PIMS体系,更新数据分类分级标准、技术管控措施与管理制度。同时,加强内部员工与服务商的合规培训,提升隐私保护意识与操作能力,确保PIMS体系持续适配业务发展与合规要求。 南京信息安全管理体系建设需契合地方监管要求,重点强化数据传输与存储安全管控。北京网络信息安全落地

企业安全风险评估流程需闭环运作,涵盖风险识别、分析、评价、处置及持续监控。上海信息安全技术

    云SaaS环境下PIMS的落地离不开服务商与用户的责任协同,he心在于明确数据处理各环节的安全责任划分,避免因权责模糊导致合规风险。从责任划分原则来看,应遵循“谁处理、谁负责”与“共同责任”相结合的原则:SaaS服务商作为数据处理的技术支持方,需承担数据存储、传输、处理等技术层面的安全责任,包括提供安全稳定的服务环境、部署数据加密、访问控制等技术措施、定期开展安全评估与漏洞修复等。用户作为数据的所有者或控制方,需承担数据处理的管理责任,包括明确数据处理目的与范围、制定内部数据使用规范、加强员工合规培训、对数据处理行为进行监督等。具体责任划分方面,在数据存储环节,服务商需保障存储环境的安全性,防范数据泄露、丢失风险;用户需明确数据存储的地域要求,确保符合跨境数据传输相关规定。在数据处理环节,服务商需按照用户的要求合规处理数据,不得超范围处理;用户需对数据处理的合法性负责,确保数据来源合规、处理目的正当。在安全事件响应环节,服务商需及时发现并通知用户安全事件,提供技术支持协助处置;用户需主导安全事件的应对,履行通知数据主体、向监管机构报告等义务。为确保责任协同落地,双方需在服务协议中明确权责划分条款。 上海信息安全技术

标签: 信息安全