企业安全风险评估后需形成风险清单,为安全资源投入与措施落地提供依据。风险评估的价值不jin在于识别风险,更在于通过评估结果指导实际安全工作,若评估后jin形成报告而不加以应用,评估工作便失去了意义。风险清单需清晰列明风险事项、风险等级、影响范围、可能后果及应对建议,按风险等级排序,突出重点风险。企业在安全资源投入时,需优先保障高风险项的资源需求,如针对高风险的he心业务系统漏洞,优先安排资金用于漏洞修复与安全设备升级。措施落地则需结合风险清单制定详细的实施计划,明确责任部门、整改时限及验收标准,确保每一项风险都有对应的防控措施。某零售企业完成风险评估后形成了详细的风险清单,针对“线上支付系统安全漏洞”这一高风险项,优先投入50万元进行系统升级,及时防范了支付安全风险。若未形成风险清单,企业可能出现资源投入盲目性,如将大量资金用于低风险的办公区域监控,而高风险的系统漏洞未得到及时处置。因此,风险清单是评估结果应用的he心载体,为企业安全工作提供明确的行动指引,确保资源投入精细、措施落地有效。 假名化需配套去标识化技术与访问控制策略,防范标识符逆向还原风险。证券信息安全落地

技术控制措施审核:聚焦数据安全落地 技术控制措施审核需围绕“数据全生命周期安全”设计检查项,覆盖采集、传输、存储、销毁等环节。采集环节检查是否部署数据tuo敏技术,敏感个人信息是否采用加密采集;传输环节核查是否使用HTTPS、VPN等加密方式,跨境传输是否具备合规技术支撑(如数据出境安全评估备案);存储环节检查是否实现数据分类存储,敏感数据是否采用加密存储,访问权限是否按“min必要”原则配置;销毁环节确认是否采用不可逆技术(如物理粉碎、多次覆写),销毁记录是否完整。同时检查技术设备的安全配置,如防火墙规则是否更新、入侵检测系统是否正常运行,确保技术措施与管理要求协同落地。江苏银行信息安全分析信息安全供应商的资质认证与售后服务能力,是长期合作的重要考量因素。

2025年9月24日下午,“安全智造2025——AI赋能智能制造安全新生态”主题论坛在国家会展中心(上海)圆满落幕。安言咨询总经理秦峰受邀主持本次论坛。本次论坛聚焦人工智能技术在智能制造安全领域的应用与治理,共同探讨AI驱动下智能制造面临的安全挑战与应对策略。汇聚ding尖智慧,yin领数字制造安全标准与发展为深化数字制造领域网络与信息安全的融合发展,加快构建行业技术标准体系,推动研发与应用落地,上海市信息安全行业协会为首批16位来自zhi名企业的技术ling袖担任数字制造领域zhuan家。这批受聘zhuan家不仅是各自企业的技术负责人,更是未来推动行业技术规范制定、关键技术攻关和产业生态建设的he心智囊团。他们的加入,将为智能制造安全可控发展提供重要支持和方向指引。来自本市高校、企业、科研院所等二十余家单位的近四十位技术zhuan家受聘成为考评员,其中,安言咨询总经理秦峰也有幸或此殊荣。这支化考评员队伍的建立,标志着上海市信息安全行业协会人才评价体系迈入更加规范化、标准化的发展新阶段,为产业持续输送高质量、能战斗的实战型人才提供了制度保障。主题演讲环节。
移动应用SDK(软件开发工具包)的第三方共享已成为数据合规的he心风险点之一,其合规控制需贯穿“事前授权、事中管控、事后审计”全流程。事前环节,应用需通过清晰易懂的隐私政策,向用户明确SDK共享的具体第三方主体、数据类型、使用目的及留存期限,避免模糊表述,保障用户的知情权与选择权。同时,需基于数据min化原则,只共享实现功能所必需的he心数据,杜绝冗余信息传输。事中管控层面,应嵌入数据传输加密、访问权限分级等技术措施,对SDK的数据流进行实时监控,防范超范围采集、传输用户数据的行为,尤其要管控位置信息、设备标识、个人敏感信息等he心数据的共享权限。事后审计需建立常态化监测机制,定期核查SDK第三方共享的实际执行情况,形成审计日志并留存必要期限,同时建立用户投诉响应通道,及时处理关于数据共享的异议与诉求。此外,应用运营者还需与SDK服务商签订合规协议,明确数据安全责任划分、违约赔偿机制及安全事件通知义务,形成全链条的合规管控体系,确保SDK第三方共享符合《个人信息保护法》《数据安全法》等相关法规要求。 ISO27701认证咨询需包含体系搭建、文件编写、内部审核等全流程专业支持。

安言咨询数据安全风险评估的实施流程:第一阶段:评估准备——谋定而后动评估准备阶段是整个数据安全风险评估工作的基石。在这一阶段,首先要确定评估目标,明确此次评估旨在解决的he心问题。其次,划定评估范围至关重要,需jing准界定涉及的业务领域、系统架构以及数据范畴。再者,组建一支的评估团队,团队成员应涵盖技术、法务、业务等多领域人才,为评估提供准确的信息。last,制定详细的评估方案,合理规划时间进度、资源调配、评估方法以及所需工具,确保评估工作有条不紊地推进。第二阶段:信息调研——摸清家底信息调研阶段是深入了解企业数据安全现状的关键环节。对数据处理者进行调研,quan面了解企业的**架构,明确各部门和人员在数据安全方面的职责和权限。对业务系统展开调研,梳理关键业务流程以及支撑这些流程的系统架构,清晰掌握数据在企业内部的流转路径。进行数据资产识别,详细盘点企业所拥有的数据类型、规模以及分布情况。对数据处理活动进行深入分析,识别数据生命周期每个环节可能存在的风险点。同时,对现有的技术防护措施进行核查,检查这些措施是否能够有效保障数据安全,是否存在漏洞或薄弱环节。假名化适用于需数据后续追溯的场景,匿名化更适配无需关联个人的统计分析类需求。个人信息安全分析
金融信息安全需应对云计算带来的风险,通过云服务商安全评估、数据加密传输等手段,保障云端金融数据安全。证券信息安全落地
供应商隐私尽调应建立分级机制,依据供应商数据接触权限实施差异化的尽调深度与频率。不同供应商与企业的数据交互程度差异较大,若对所有供应商采用统一的尽调标准,不仅会增加尽调成本,还可能导致he心风险被忽视。分级机制的he心是根据供应商接触企业数据的权限等级,划分不同的尽调级别,实施差异化管理。对于高等级供应商,即直接接触企业he心商业秘密或大量敏感个人信息的供应商,如云服务提供商、数据处理外包商,需实施深度尽调,除常规核查外,还需开展现场安全评估、渗透测试等,尽调频率至少每半年一次。对于中等级供应商,即接触一般性业务数据的供应商,如物流合作商,实施常规尽调,重点核查数据处理资质及基本安全措施,尽调频率为每年一次。对于低等级供应商,即不直接接触企业数据的供应商,如办公用品供应商,jin需进行简单的合规性核查,尽调频率可适当降低。某零售企业通过建立分级尽调机制,将有限的尽调资源集中用于高等级供应商,精细发现了某云服务供应商的安全漏洞,及时更换合作方,避免了数据泄露风险。分级机制需明确分级标准、尽调内容及频率,确保尽调工作高效且精细。证券信息安全落地