二、我们的DSMM咨询服务能为您做什么?•成熟度差距分析:深入调研访谈,***理解您的业务场景与数据流。依据DSMM标准,细致评估当前各项能力域成熟度。出具详实、客观的差距分析报告,明确改进优先级。•体系规划与建设**:基于差距和业务目标,量身定制DSMM提升路线图。协助构建或优化数据安全**架构、管理制度、操作规程。指导技术体系优化(数据识别、分类分级、访问控制、加密***、审计监控等)。提供人员意识与能力提升方案与培训。•认证评估全程护航:模拟评估演练,提前发现问题并整改。指导准备详实的评估证明材料。全程对接评估机构,提供答疑与沟通支持,***提升通过率。协助获得官方认可的DSMM等级证书。•持续改进与价值深化:建立长效的数据安全度量与监控机制。提供周期性复评与优化建议,确保持续符合标准并提升能力。将DSMM成果转化为降本增效、提升客户信任、赢得市场竞争优势的实际价值。往期推荐***">001安言观察|本周网数安全资讯(第4期)002一图读懂GB/T22080-2025《网络安全技术信息安全管理体系要求》003关于开展个人信息保护负责人信息报送工作的公告▼信息安全。审计报告是企业自证合规、争取监管信任的关键“通行证”。天津金融信息安全商家

在客户越来越关注数据安全的时代,拥有完善的数据安全保障体系的企业,更容易赢得客户的信任和合作机会,从而在市场竞争中脱颖而出。数据安全风险评估实施流程03以《GB/T45577-2025数据安全技术数据安全风险评估方法》为例,来看一下数据安全风险评估的实施流程:第一阶段:评估准备——谋定而后动评估准备阶段是整个数据安全风险评估工作的基石。在这一阶段,首先要确定评估目标,明确此次评估旨在解决的**问题。其次,划定评估范围至关重要,需精细界定涉及的业务领域、系统架构以及数据范畴。再者,组建一支的评估团队,团队成员应涵盖技术、法务、业务等多领域人才,为评估提供准确的信息。***,制定详细的评估方案,合理规划时间进度、资源调配、评估方法以及所需工具,确保评估工作有条不紊地推进。第二阶段:信息调研——摸清家底信息调研阶段是深入了解企业数据安全现状的关键环节。对数据处理者进行调研,***了解企业的**架构,明确各部门和人员在数据安全方面的职责和权限。对业务系统展开调研,梳理关键业务流程以及支撑这些流程的系统架构,清晰掌握数据在企业内部的流转路径。进行数据资产识别,详细盘点企业所拥有的数据类型、规模以及分布情况。江苏企业信息安全管理体系将合规风险扼杀在萌芽阶段。

以便企业能够根据风险等级制定相应的应对策略。第五阶段:评估总结——开出良方评估总结阶段是整个数据安全风险评估工作的收官之作。编制评估报告,系统总结评估过程和发现的问题。提出针对性的处置建议,根据风险等级和实际情况,为企业制定切实可行的改进方案。同时,进行残余风险分析,明确在采取处置措施后仍然存在的剩余风险以及相应的应对措施,确保企业能够持续保持数据安全状态。结束语04数据安全风险评估的落地不仅是合规要求,更是企业构建**竞争力的关键。通过数据分类分级、跨部门协同、技术适配和全员参与,企业可有效管控数据风险,同时释放数据价值。未来,随着监管力度加强和技术演进,数据安全管理将更趋精细化。而安言咨询作为外部智囊,将持续为企业提供前瞻性解决方案,助力其在安全与创新的平衡中稳健前行。
看点1、AI大模型应用普及度高,算力与场景部署呈现多元化•应用渗透加速:的企业已接触AI大模型,2022年(ChatGPT发布)与2024年(DeepSeek发布)成为企业接入高峰期,分别占比、。•算力部署分化:企业选择本地算力,依赖云端,采购云上服务,但企业尚未部署任何算力资源。•应用架构分层:采用集团集中式管理,混合式部署,分布式架构,*企业无规范策略。看点2、效率提升为**价值,但AI落地效果与预期存在差距•业务影响***:企业反馈效率提升(流程自动化缩短超50%时间),实现成本降低,创新能力增强。•效果评价分化:企业认为AI效果“一般”,*认为“很好”,认为“投资性价比低”。•头部模型领跑:DeepSeek()、豆包()、文心一言()、ChatGPT()成为企业使用率**高的四大模型。看点3、安全风险集中爆发,数据与合规成企业首要担忧•现实风险凸显:企业遭遇AI生成内容事实性错误,面临模型被恶意利用(如钓鱼邮件),出现系统集成漏洞。•TOP3风险预警:数据泄露()、合规风险()、数据质量与幻觉()成企业**关注的安全痛点。•合规需求明确:**《人工智能安全治理框架》()、《生成式人工智能服务管理暂行办法》()、GB/T45288系列标准。遵循信息安全标准可提升组织信息安全防护能力,减少损失。

《重要数据保护实践》侯大鹏纬景储能安全负责人企业数据分级隔离安全管理解决方案通过创新融合零信任架构与传统终端安全技术,构建了高性价比的数据防护体系。该方案以“零信任动态防护+传统技术升级”双引擎为**,在不改变企业原有网络架构的前提下,实现**数据的分级隔离与安全流转,尤其适用于混合办公场景下的数据泄露风险防控。技术层面,方案基于零信任SDP框架建立三层防护架构:客户端集成多重身份验证与设备指纹识别,作为统一接入入口;控制中心通过AI驱动实时分析设备状态、用户行为及数据敏感度,动态调整访问权限;安全网关则采用加密隧道技术,将业务系统隐藏于互联网之外,*对授权终端开放**应用端口,有效抵御网络层攻击。同时,复用企业现有的桌面管理系统(EDR)和数据防泄漏(DLP)模块,通过设备合规检查、外设管控、文档水印等技术,形成“终端准入-行为监控-数据溯源”完整链条。两类技术通过策略中枢实现联动,相较单一零信任方案降低60%部署成本。方案性价比优势***:一是采用轻量化部署模式,支持云化服务或本地化部署,企业可根据数据规模弹性扩展;二是模块化设计允许优先保护**业务系统,较传统网络隔离方案节省40%以上改造成本。选择安言咨询,不仅能获得专业的信息安全服务,更能将网络安全和 IT 管理治理转化为企业发展的竞争和驱动力。广州证券信息安全设计
个人信息保护合规审计已不再是可有可无的管理工具,而是企业数字化转型的必备基础设施。天津金融信息安全商家
)为企业合规重点参考。**发现与重点结论:企业AI布局和安全需求企业对AI建设的投资和布局都给出了积极的安排,用AI支撑企业的业务转型已成为共识,而安全问题也成为其中一块重点考虑的问题点。看点4、资本涌入推动AI基建,行业投资差异***•投资意愿强烈:企业未来3年有AI投资计划,预计投入超3000万元,计划投入1000-3000万元。•行业分层明显:金融(80%高投入)、教育(30%超3000万)、工业/制造(20%高投入)、汽车等行业投资规模**。看点5、**门角色重构,技术与管理双轨并行•**任务明确:**门聚焦“支持业务AI落地安全”,探索“安全业务内AI应用”。•挑战与机遇并存:需引入新安全技术,要求人员AI赋能;同时认为AI可加强安全运维,用于监控数据分析。•策略选择分化:企业优先“控数据外发”,主张“安全融入业务架构”,*选择“先发展后管控”。看点6、AI安全需求业已明确,但企业预算投入尚待增进AI赋能安全三大需求:在AI赋能安全的需求上,***需求是将AI大模型应用到攻击检测&威胁发现上,其次为自动化监视/运营上,占比,排名第三的是代码检测,占比。这三项是AI赋能安全的重点需求。天津金融信息安全商家