第四代NVIDIANVLink在全归约操作上提供了3倍的带宽提升,在7倍PCIeGen5带宽下,为多GPUIO提供了900GB/sec的总带宽,比上一代NVLink增加了50%的总带宽。第三代NVSwitch技术包括驻留在节点内部和外部的交换机,用于连接服务器、集群和数据中心环境中的多个GPU。节点内部的每个NVSwitch提供64个第四代NVLink链路端口,以加速多GPU连接。交换机的总吞吐率从上一代的。新的第三代NVSwitch技术也为多播和NVIDIASHARP网络内精简的集群操作提供了硬件加速。新的NVLinkSwitch系统互连技术和新的基于第三代NVSwitch技术的第二级NVLink交换机引入地址空间隔离和保护,使得多达32个节点或256个GPU可以通过NVLink以2:1的锥形胖树拓扑连接。这些相连的节点能够提供TB/sec的全连接带宽,并且能够提供难以置信的一个exaFlop(百亿亿次浮点运算)的FP8稀疏AI计算。PCIeGen5提供了128GB/sec的总带宽(各个方向上为64GB/s),而Gen4PCIe提供了64GB/sec的总带宽(各个方向上为32GB/sec)。PCIeGen5使H100可以与性能高的x86CPU和SmartNICs/DPU(数据处理单元)接口。H100 GPU 促销降价,快来选购。香港SupermicroH100GPU
H100 GPU 还集成了多种先进的安全和管理功能。例如,它支持 NVIDIA 的 GPU Direct 技术,能够实现 GPU 之间的直接通信,减少了 CPU 参与的数据传输延迟,提升了数据传输效率。此外,H100 GPU 还支持多种虚拟化技术,如 NVIDIA vGPU,能够在虚拟化环境中提供高性能的图形和计算服务。其多样化的管理和安全功能,使得 H100 GPU 在企业级数据中心和云计算平台中具备了更高的适用性和管理便捷性。在能效方面,H100 GPU 也表现优异。其功耗设计为 400W,但在实际使用中,通过优化负载分配和动态电压频率调节(DVFS)技术,可以有效降低功耗,提高能效比。对于需要长时间运行的大规模计算任务,H100 GPU 的高能效设计不仅可以降低运营成本,还减少了对环境的影响。其先进的功耗管理技术确保了在提供高性能计算的同时,依然能够保持较低的能源消耗。香港SupermicroH100GPUH100 GPU 适用于大数据分析任务。
第四代张量:片间通信速率提高了6倍(包括单个SM加速、额外的SM数量、更高的时钟);在等效数据类型上提供了2倍的矩阵乘加(MatrixMultiply-Accumulate,MMA)计算速率,相比于之前的16位浮点运算,使用新的FP8数据类型使速率提高了4倍;稀疏性特征利用了深度学习网络中的细粒度结构化稀疏性,使标准张量性能翻倍。新的DPX指令加速了动态规划算法达到7倍。IEEEFP64和FP32的芯片到芯片处理速率提高了3倍(因为单个SM逐时钟(clock-for-clock)性能提高了2倍;额外的SM数量;更快的时钟)新的线程块集群特性(ThreadBlockClusterfeature)允许在更大的粒度上对局部性进行编程控制(相比于单个SM上的单线程块)。这扩展了CUDA编程模型,在编程层次结构中增加了另一个层次,包括线程(Thread)、线程块(ThreadBlocks)、线程块集群(ThreadBlockCluster)和网格(Grids)。集群允许多个线程块在多个SM上并发运行,以同步和协作的获取数据和交换数据。新的异步执行特征包括一个新的张量存储加速(TensorMemoryAccelerator,TMA)单元,它可以在全局内存和共享内存之间非常有效的传输大块数据。TMA还支持集群中线程块之间的异步拷贝。还有一种新的异步事务屏障。
L2CacheHBM3内存控制器GH100GPU的完整实现8GPUs9TPCs/GPU(共72TPCs)2SMs/TPC(共144SMs)128FP32CUDA/SM4个第四代张量/SM6HBM3/HBM2e堆栈,12个512位内存控制器60MBL2Cache第四代NVLink和PCIeGen5H100SM架构引入FP8新的Transformer引擎新的DPX指令H100张量架构专门用于矩阵乘和累加(MMA)数学运算的高性能计算,为AI和HPC应用提供了开创性的性能。H100中新的第四代TensorCore架构提供了每SM的原始稠密和稀疏矩阵数学吞吐量的两倍支持FP8、FP16、BF16、TF32、FP64、INT8等MMA数据类型。新的TensorCores还具有更**的数据管理,节省了高达30%的操作数交付能力。FP8数据格式与FP16相比,FP8的数据存储需求减半,吞吐量提高一倍。新的TransformerEngine(在下面的章节中进行阐述)同时使用FP8和FP16两种精度,以减少内存占用和提高性能,同时对大型语言和其他模型仍然保持精度。用于加速动态规划(“DynamicProgramming”)的DPX指令新引入的DPX指令为许多DP算法的内循环提供了高等融合操作数的支持,使得动态规划算法的性能相比于AmpereGPU高提升了7倍。L1数据cache和共享内存结合将L1数据cache和共享内存功能合并到单个内存块中简化了编程。H100 GPU 限时特惠,立刻抢购。
视频编辑需要处理大量的图像和视频数据,H100 GPU 的强大计算能力为此类任务提供了极大的便利。其高带宽内存和并行处理能力能够快速渲染和编辑高分辨率视频,提升工作效率。无论是实时预览、明显处理还是多层次剪辑,H100 GPU 都能流畅应对,减少卡顿和渲染时间。其高能效设计和稳定性确保了视频编辑过程的顺利进行,使其成为视频编辑领域的理想选择。虚拟现实(VR)开发对图形处理和计算能力有极高要求,H100 GPU 的性能使其成为 VR 开发的重要工具。其高并行计算能力和大带宽内存可以高效处理复杂的 VR 场景和互动效果,提供流畅的用户体验。H100 GPU 的高分辨率渲染能力能够实现更逼真的视觉效果,提升 VR 应用的沉浸感。此外,H100 GPU 的稳定性和高能效设计也为长时间开发和测试提供了可靠保障,助力开发者创造出更具吸引力的 VR 应用。购买 H100 GPU 享受限时特价。天津H100GPU促销
H100 GPU 促销优惠,马上行动。香港SupermicroH100GPU
大多数GPU用于什么用途?#对于使用私有云(CoreWeave、Lambda)的公司,或拥有数百或数千台H100的公司,几乎都是LLM和一些扩散模型工作。其中一些是对现有模型的微调,但大多数是您可能还不知道的从头开始构建新模型的新创业公司。他们正在签订为期3年、价值1000万至5000万美元的合同,使用几百到几千台GPU。对于使用带有少量GPU的按需H100的公司来说,其LLM相关使用率可能仍>50%。私有云现在开始受到企业的青睐,这些企业通常会选择默认的大型云提供商,但现在大家都退出了。大型人工智能实验室在推理还是训练方面受到更多限制?#取决于他们有多少产品吸引力!SamAltman表示,如果必须选择,OpenAI宁愿拥有更多的推理能力,但OpenAI在这两方面仍然受到限制。香港SupermicroH100GPU