您好,欢迎访问

商机详情 -

深圳高性能边缘计算解决方案设计

来源: 发布时间:2025年10月23日

在数字经济与人工智能深度融合的2025年,服务器已成为支撑千行百业数字化转型的重心基础设施。作为国家高新企业,深圳市倍联德实业有限公司(以下简称“倍联德”)凭借其在AI服务器、边缘计算、液冷技术及全闪存存储等领域的全栈创新能力,正为金融、医疗、科研、制造等领域提供高效、可靠、绿色的算力底座,成为推动中国智造迈向全球价值链变革的关键力量。倍联德成立于2015年,总部位于深圳龙岗,专注于服务器、边缘计算设备及液冷工作站的研发与生产,累计获得50余项技术与软著,市场占有率稳居行业前列。智慧交通解决方案通过减少拥堵与事故,每年为城市节省数十亿元经济损失与时间成本。深圳高性能边缘计算解决方案设计

深圳高性能边缘计算解决方案设计,解决方案

倍联德深耕智慧城市领域多年,其技术体系覆盖从数据采集、传输到存储、分析的全链路需求,形成三大重要优势:针对智慧城市中交通信号控制、环境监测等需要毫秒级响应的场景,倍联德推出1U短深度边缘服务器,采用英特尔至强D系列处理器,支持20重心高算力与冗余电源设计,可在-20℃至60℃的极端环境下稳定运行。例如,在西安智慧交通项目中,该服务器通过部署于路口的摄像头与传感器网络,实时分析车流量数据并动态调整信号灯配时,使主干道通行效率提升30%,拥堵时长缩短40%。深圳高性能工作站解决方案公司智慧交通摄像头搭载AI芯片,可同时识别车牌、车型与违章行为,准确率超过99%。

深圳高性能边缘计算解决方案设计,解决方案

在人工智能、工业自动化与边缘计算深度融合的2025年,GPU工作站已从单一的计算工具演变为支撑行业数字化转型的重要基础设施。随着Blackwell架构GPU的商用化,倍联德正研发支持FP4精度计算的下一代工作站,预计将AI推理性能再提升2倍。公司创始人覃超剑表示:“我们的目标不只是提供硬件,更要通过软硬协同优化,让千亿参数大模型像使用办公软件一样便捷。”从医疗诊断到工业质检,从科研模拟到内容创作,倍联德实业有限公司正以GPU工作站为支点,撬动千行百业的智能化变革。在这场算力变革中,这家深圳企业正用技术创新诠释“中国智造”的全球竞争力。

倍联德液冷系统采用微通道冷板与螺旋板式热交换器,通过优化流体动力学路径,将热传导效率提升至传统风冷的5倍以上。例如,其R500Q系列2U液冷服务器在搭载8张NVIDIA RTX 5880 Ada显卡时,单柜功率密度达50kW,但通过冷板式液冷技术将PUE值压低至1.05,较风冷方案节能40%。在某三甲医院的DeepSeek医学大模型训练中,该方案使单次训练碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。针对液冷系统维护复杂的问题,倍联德开发了AI动态调温平台,通过实时监测冷却液流量、温度及设备负载,自动调节泵速与散热模块功率。在香港科技大学的深度学习平台升级项目中,该系统使4张NVIDIA RTX 4090显卡的硬件利用率达98%,模型训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。城市治理解决方案在智能交通和智能环保方面取得了明显成果。

深圳高性能边缘计算解决方案设计,解决方案

倍联德通过“硬件+软件+服务”的一体化模式,构建起覆盖芯片厂商、ISV及终端用户的开放生态:公司与英特尔、英伟达、华为等企业建立联合实验室,共同优化存储协议与加速库。例如,其存储系统深度适配NVIDIA Magnum IO框架,使AI训练任务的数据加载速度提升3倍;与华为合作开发的NoF+存储网络解决方案,已应用于30余家金融机构及交通企业。针对不同规模客户的差异化需求,倍联德提供从标准产品到OEM/ODM的灵活合作模式。例如,为中小交通企业设计的Mini-Eve系列工作站,在2U空间内集成2张RTX 4090显卡与全闪存存储,支持Stable Diffusion文生图任务的批量处理,而成本只为同类产品的60%。数据中心解决方案确保了数据的安全存储与高效访问。广东高性能液冷工作站解决方案服务机构

智慧交通解决方案在缓解城市交通拥堵和提高交通效率方面发挥了重要作用。深圳高性能边缘计算解决方案设计

针对高密度计算场景的散热难题,倍联德推出R300Q/R500Q系列2U液冷服务器,采用冷板式液冷设计,PUE值低至1.05,较传统风冷方案节能40%。以某三甲医院为例,其部署的R500Q液冷工作站搭载8张NVIDIA RTX 5880 Ada显卡,在运行6710亿参数的DeepSeek医学大模型时,单柜功率密度达50kW,但通过液冷技术将噪音控制在55分贝以下,同时使单次模型训练的碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。倍联德自主研发的异构计算平台支持CPU+GPU+DPU协同工作,通过动态资源调度优化计算-通信重叠率。在香港科技大学的深度学习平台升级项目中,其定制化工作站采用4张NVIDIA RTX 4090显卡与至强四代处理器组合,配合JensorFlow框架实现98%的硬件利用率,使ResNet-152模型的训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。深圳高性能边缘计算解决方案设计