自动化运维是智慧运维平台提升效率的关键手段,平台内置可视化脚本编辑器与丰富的预制模板,支持 Shell、Python 等多种脚本语言,运维人员可通过拖拽方式快速构建部署、巡检、故障恢复等自动化流程。通过与监控系统联动,平台能够实现故障的自动诊断与修复,例如当检测到服务端口异常时,自动执行重启脚本并验证恢复结果;同时支持按时间周期或事件触发自动化任务,实现服务器批量补丁安装、数据库定时备份等重复性工作的无人化处理,大幅减少人工操作成本与失误率。三重加密防护保障项目数据安全。甘肃数字孪生智慧运维平台
智慧运维平台的后端框架优势京源智慧生产运行中心后端采用了基于SpringCloud的微服务架构,将整个系统拆分成多个的服务,每个服务运行在自己的Docker容器中,并通过轻量级的通信机制进行交互。服务之间的通信采用RestfulAPI的方式进行,简化了服务之间的调用过程,增强了系统的动态伸缩性和容错性。数据存储优势在数据存储方面,使用MySQL作为关系型数据库,存储系统的业务数据。同时,引入了ClickHouse作为列式数据库存储仪器仪表数据,用于大数据分析场景。此外,还使用了Redis作为缓存系统,对常用的数据进行了缓存,提高了系统的响应速度。为了实现实时数据处理和消息通信,还集成了Kafka用于处理实时数据流,提供高吞吐量的数据传输能力。系统通过SpringCloud的注册中心进行服务发现和注册,简化了服务的部署和管理,提高了系统的可维护性和可靠性。在运维方面使用Docker容器化技术,该技术架构实现了服务的快速部署和容器编排,提高了系统的可伸缩性和可靠性。江苏运维调度智慧运维平台快速响应设备故障启动维修流程。
智慧运维平台的在时空维度上,系统采用动态时间轴与地理信息叠加技术。时间轴可向前追溯 36 个月的历史项目数据,向后预览 12 个月的项目规划,拖动滑块时,地图上的项目标记会随之增减,直观展示业务扩张轨迹。例如拖动至 2023 年 Q1,地图上会自动隐藏该季度之后启动的项目,同时弹出该时期的项目投资总额与区域分布对比图。地理信息层面则支持 zoom-in 至乡镇级精度,对于大型园区项目,甚至能显示施工区域的卫星遥感图像,叠加 BIM 模型展示地下管网与地面建筑的施工进度匹配度。业务维度的数据呈现聚焦项目执行质量,通过 “三色九宫格” 模型直观展示各项目的健康度。九宫格横轴为进度偏差率(-10% 至 + 10%),纵轴为成本偏差率(-5% 至 + 5%),每个格子一个项目状态区间。绿色格子表示进度与成本均在可控范围内的健康项目,黄色格子**存在轻微偏差需关注的项目,红色格子则标识偏差超标的风险项目。每个格子内的项目数量以数字叠加形式显示,点击红色格子可立即调取相关项目的问题清单,包括设计变更次数、材料进场延迟天数等具体原因。
智慧运维平台的数据流转的闭环设计确保了管理决策的科学性。数字大屏发现的 “管网末梢压力偏低” 问题,通过中屏模块的数据分析,定位为某加压泵站的水泵效率下降;中屏系统生成的 “水泵检修” 任务,通过移动端派发至维修班组;维修完成后,移动端上传的水泵性能曲线同步至中屏系统,经分析确认压力恢复正常后,结果反馈至大屏的压力监控面板。这种全链路的数据流转,使每个管理决策都有数据支撑,每个执行结果都有数据验证,形成 “问题发现 - 原因分析 - 措施制定 - 效果验证” 的 PDCA 循环。三色九宫格模型直观展示项目健康状况。
智慧运维平台的地图左侧的项目分类看板采用环形百分比图与柱状图组合展示。环形图实时更新项目类型的数量占比,其中市政供水项目、污水处理工程、管网改造项目等业务以醒目的主题色标注;柱状图则按季度对比各类项目的新增数量,点击任意类别可联动地图区域,高亮显示该类型的所有项目分布。右侧的项目状态看板则通过漏斗模型呈现项目全流程转化情况:顶部蓝色部分已签约未开工项目,中部绿色部分为施工中项目,底部橙色部分是进入验收阶段的项目,各部分的高度比例对应实际数量占比,漏斗边缘的动态数字实时刷新各阶段项目的总金额。资源热力调度图优化资源调配方案。江苏运维调度智慧运维平台
数字大屏模块直观呈现全域项目实时数据。甘肃数字孪生智慧运维平台
智慧运维平台的算法优势:污水处理在污染防治和温室气体减排中扮演着角色。随着城市污水处理设施排放标准的日益严苛,污水厂在确保出水稳定达标上的安全裕量正在逐步缩减。这意味着污水厂必须从粗放型管理向精细化运营转型,这是满足更高环保要求、提升整体运行效能的必然趋势,在此基础上推出基于机理模型辅助下的人工智能加药算法,推动污水处理走向智能化时代,该算法通过多层前回馈神经网络不断修正ASM机理模型中参数值,实现机理模型中参数自适应校正。甘肃数字孪生智慧运维平台