您好,欢迎访问

商机详情 -

吉林番茄智能采摘机器人按需定制

来源: 发布时间:2025年08月16日

自动分类功能将采摘的果实按品质进行分拣。智能采摘机器人搭载高光谱成像仪与 AI 视觉识别系统,通过分析果实的颜色、形状、纹理以及内部糖分含量等多维数据,实现对果实品质的分级。在柑橘采摘过程中,机器人首先利用高光谱图像检测果实内部的糖酸比,结合表面瑕疵识别算法,将果实分为特级、一级、二级等不同等级。分拣机械臂根据分级结果,将果实准确投放至对应的收集箱或输送带上。系统还支持自定义分级标准,果园管理者可根据市场需求,灵活调整果实大小、糖度等筛选参数。经测试,该自动分类系统的分拣准确率达 98% 以上,相比人工分拣效率提升 60%,有效满足不同销售渠道对果实品质的差异化需求。熙岳智能的智能采摘机器人具备环境智能感知与自主避障能力,保障作业安全。吉林番茄智能采摘机器人按需定制

智能采摘机器人

智能采摘机器人可在陡坡、梯田等复杂地形作业。针对复杂地形,机器人采用履带式底盘与自适应悬架系统相结合的设计。履带表面的防滑齿纹与梯田台阶紧密咬合,配合主动悬挂系统实时调节底盘高度和倾斜角度,确保机器人在 45° 陡坡上仍能平稳作业。在云南的咖啡种植梯田中,机器人通过激光雷达扫描地形,自动生成贴合梯田轮廓的螺旋式作业路径,避免垂直上下带来的安全隐患。机械臂配备的万向节结构使其在倾斜状态下仍能保持水平采摘,确保果实抓取稳定。同时,机器人具备防侧翻预警功能,当检测到车身倾斜超过安全阈值时,会自动启动制动系统并发出警报。这种专为复杂地形优化的设计,使智能采摘机器人突破地形限制,将高效作业覆盖至传统设备难以到达的区域,助力山地果园实现机械化生产。安徽农业智能采摘机器人私人定做熙岳智能在智能采摘机器人领域不断创新,农业科技发展新潮流。

吉林番茄智能采摘机器人按需定制,智能采摘机器人

智能采摘机器人搭载多光谱摄像头,可识别果实成熟度。多光谱摄像头作为机器人的 “眼睛”,能够捕捉可见光和不可见光范围内的多种光谱信息,覆盖从紫外线到近红外的波段。不同成熟度的果实,在这些光谱下会呈现出独特的反射、吸收和透射特性。例如,成熟的苹果在近红外光谱下反射率较高,而未成熟的苹果反射率较低。机器人通过分析多光谱图像数据,结合预先训练好的算法模型,能够快速且地判断果实是否达到采摘状态。这种技术不避免了人工判断的主观性和误差,还能在复杂光照条件下保持稳定的识别效果,有效提升了采摘果实的品质和一致性,极大减少了因采摘过早或过晚造成的损失。

模块化设计让机器人能适配不同作物的采摘需求。智能采摘机器人采用模块化设计理念,其各个功能部件如机械臂、末端执行器、传感器组等都设计为的模块。不同作物的生长特性、果实形态和采摘要求差异很大,例如,草莓果实小巧、生长在地面附近,需要精细的抓取和较低的采摘高度;而柑橘果实成簇生长,且果树较高,需要机械臂具备更大的伸展范围和不同的抓取方式。通过模块化设计,当需要采摘不同作物时,操作人员可以方便快捷地更换相应的模块。更换更小巧、灵活的机械臂和末端执行器用于草莓采摘,或者换上伸展范围更大、抓取力更强的模块来应对柑橘采摘。同时,软件系统也能根据不同模块的特性自动调整参数和控制策略,使机器人迅速适应新的采摘任务。这种模块化设计提高了机器人的通用性和灵活性,降低了果园使用多种采摘设备的成本。凭借智能采摘机器人等创新产品,熙岳智能在智能科技领域崭露头角,前景广阔。

吉林番茄智能采摘机器人按需定制,智能采摘机器人

机械手指采用仿生材料,抓取果实稳定且不伤表皮。智能采摘机器人的机械手指采用了模仿生物组织特性的仿生材料,这种材料具有独特的物理和力学性能。它既具备一定的柔韧性和弹性,能够紧密贴合果实的表面,提供稳定的抓取力;又具有良好的耐磨性和低摩擦系数,避免在抓取过程中对果实表皮造成划伤或磨损。仿生材料内部还嵌入了微型压力传感器,这些传感器能够实时感知机械手指与果实之间的接触压力,并将数据反馈给控制系统。控制系统根据果实的种类、大小和成熟度,精确调节机械手指的抓取力度。对于表皮娇嫩的樱桃,机械手指会以极轻微的力度包裹抓取;而对于相对坚硬的椰子,抓取力度则会适当增强。通过仿生材料和智能控制系统的结合,机械手指在保证抓取稳定的同时,限度地保护了果实的完整性,有效提升了采摘果实的品质。南京熙岳智能科技有限公司成立于 2017 年,在智能采摘机器人研发方面成果。北京农业智能采摘机器人按需定制

机器人可根据所处环境及时调整行走策略,实现自主避障,这离不开熙岳智能的技术支持。吉林番茄智能采摘机器人按需定制

智能采摘机器人具备自我诊断功能,及时发现故障。机器人内置的自我诊断系统由传感器阵列、故障诊断算法和数据处理模块组成。遍布机器人全身的传感器,如温度传感器、振动传感器、电流传感器等,实时监测机械臂关节温度、电机运行电流、部件振动频率等关键参数。当某个参数超出正常范围时,故障诊断算法会根据预设的故障模型进行分析,快速定位故障点。例如,若机械臂关节温度异常升高,系统可判断为润滑不足或轴承磨损,并通过显示屏和语音提示输出故障代码和解决方案。同时,故障信息会自动上传至云端管理平台,技术人员可远程查看故障详情,提前准备维修配件,缩短维修时间。在实际应用中,自我诊断系统可将故障发现时间提前 80% 以上,减少因故障导致的停机时间,保障果园采摘作业的顺利进行。吉林番茄智能采摘机器人按需定制