YOLO(YouOnlyLookOnce)是一种目标检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法开始被提出是在2016年的论文《YouOnlyLookOnce:统一的实时目标检测》中。自发布以来,由于其高准确性和速度,YOLO已成为目标检测和分类任务中很受欢迎的算法之一。它在各种目标检测基准测试中实现了高性能。就在2023年5月初,YOLO-NAS模型被引入到机器学习领域,它拥有更高的精度和速度,超越了其他模型如YOLOv7和YOLOv8。通过大量的多边形标注工作,能够更好的帮助我们提高算法模型的准确性和鲁棒性。新疆国产化图像标注功能
SpeedDP是成都慧视光电技术有限公司打造的深度学习算法开发平台,可运行于Windows或Linux操作系统,可完成自动标注、AI算法(目前支持目标检测)开发(项目配置、训练、评估、测试)、模型部署等相关功能,充分保证数据安全的基础上,帮助客户减少人力、物力消耗,节省开发时间。目前支持的主要任务功能包括图像分类、目标检测、多目标跟踪,主要的部署平台是RockChip嵌入式硬件平台包括rk3399pro、rk3588等。对于一些有图像标注的企业单位,SpeedDP能够帮助进行快速的图像标注,提升效率。上海如何图像标注有哪些图像算法工程师的工具利器。
长时间一直进行这样的图像标注工作,那无疑是枯燥而乏味的,手酸不说,更多的是精神上的折磨,进而效率大打折扣。但这又是算法提升的必要途径,无法跳过,当项目紧急时,甚至需要多人加班加点赶进度。这样的痛苦现状急需改变!慧视光电的算法工程师为了提高这一的效率,开发了一个深度学习算法开发平台SpeedDP。它的基本逻辑是基于一个手动标注一定量的数据集进行训练,形成一个可用的预选模型(如果已有模型可以直接使用),然后训练一定阶段后,可以评估此模型的能力,如果能够满足使用就可以对相同目标的新数据集(未进行任何标注)进行AI自动化标注。这一过程的省去了大量需要对新数据集的手动拉框工作,同时也在不断反哺此模型算法,帮助提升性能。
这个过程中,采用无人机是个高效的办法。无人机高空观察能够获得更多的视野,并且针对许多人无法到达的地方,还能够快速抵近观察,防止惊扰。此外,更高效的措施是在无人机上加装具备图像处理的板卡,这时候无人机就是一个智慧眼,它能够在算法的辅助下,对野猪等动物进行AI搜寻,并且具备目标锁定功能。当无人机发现疑似目标就可以抵近观察,一旦确认目标就能够立即锁定跟踪,这样,地面围剿人员就可以快速像区域靠拢,对野猪进行逮捕驱逐。这样的无人机智慧眼可以用成都慧视开发的Viztra-HE030图像处理板来实现,这块板卡采用瑞芯微旗舰级芯片RK3588,算力能够达到6.0TOPS,处理村落、树林等复杂环境不在话下。同时,针对于野生动物目标识别算法的AI训练,成都慧视还可以提供专门的AI训练平台SpeedDP,通过大量的模型训练实现AI自动图像标注,进而帮助提升算法识别性能。SpeedDP能够帮助企业节约人力成本。
你是否也曾一个个的将图像添加标签进行分类,如此机械式的操作令你心烦?你们单位是否也曾为了不多不少的图像分类标注而不得不增加一个岗位?你们也是否因图像标注需求和数据安全不可兼得而苦恼?为了解决这一市场需求和困境,慧视光电研发了SpeedDP深度学习算法开发平台,如今平台已经实现移动端使用,可运行于Windows或Linux操作系统,可完成自动标注、AI算法开发(项目配置、训练、评估、测试)、模型部署等相关功能,充分保证数据安全的基础上,帮助使用者减少人力、物力消耗,节省开发时间。SpeedDP能够实现AI自动图像标注。安徽如何图像标注有哪些
SpeedDP能够帮助进行算法模型的测试验证。新疆国产化图像标注功能
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被大量用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。新疆国产化图像标注功能