您好,欢迎访问

商机详情 -

湖北省时省力图像标注技术

来源: 发布时间:2025年05月30日

城市湿地公园是“城市之肺”,是生态建设的重要一环,因此对于湿地公园的日常巡逻必不可少。但是大面积的湿地公园地形复杂交错,许多区域依靠传统的人工巡逻,无法到达。此外,人工巡逻的效率远远不够,无法做到及时响应和精确记录,久而久之,成本就不断累计增加。无人机的落地应用,能够有效减少人工成本的问题。无人机能够凭借小巧的身型,在湿地错综复杂的环境中自由穿梭,确保无死角。利用无人机打造智能巡检系统,通过高清摄像头抵近观察,能够实现湿地全域的高效巡检。其中,智能化的措施在于可以在摄像头的基础上加装图像处理板,通过图像处理板和算法的共同作用,能够让无人机摄像头变成“智慧眼”,这只“智慧眼”能够精细AI识别动物、树木、水中的杂物等等信息,通过大量的数据收集,为管理决策提供依据。大量的图像标注工作交给AI。湖北省时省力图像标注技术

湖北省时省力图像标注技术,图像标注

YOLO(YouOnlyLookOnce)是一种目标检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法开始被提出是在2016年的论文《YouOnlyLookOnce:统一的实时目标检测》中。自发布以来,由于其高准确性和速度,YOLO已成为目标检测和分类任务中很受欢迎的算法之一。它在各种目标检测基准测试中实现了高性能。就在2023年5月初,YOLO-NAS模型被引入到机器学习领域,它拥有更高的精度和速度,超越了其他模型如YOLOv7和YOLOv8。湖北省时省力图像标注技术传统的人工标注很累人。

湖北省时省力图像标注技术,图像标注

YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被大量用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。

无人机在农业领域能够实现高效率的施肥、播种等操作。但是不同的作业环境对于无人机的工作性能要求不一样,同样的方案在平原地区适用,在高原地区就不行。因此针对于特殊作业环境需要制定不同的智慧化方案。像青藏高原这样地貌复杂、低气压、大温差的特点,参与智能化工作的各个部件需要符合这样作业环境特点的性能要求。不比平原的一马平川,高原由于环境复杂,地形起伏对于无人机的飞行也需要进行控制,无论是高度还是速度甚至距离都需要进行严格限制,防止出现撞机等事故。因此,这个方面的智慧化建设就需要无人机具备智能避障的功能,无人机需要在高速度或者远距离的情况下识别树木、电线杆、石头等障碍物,并能够实现避障。慧视SpeedDP能够替代人工标注。

湖北省时省力图像标注技术,图像标注

美国再度要求台积电停止出口7纳米芯片给大陆,目前看来国产AI图像处理的性能还得由RK3588稳坐,不久前传出了瑞芯微RK3688至少在一两年内无法推出,因此对于许多有高性能AI图像处理板需求的客户无需再等了。当下,选择RK3588至少还可以保持性能***两三年,而在国内进行RK3588开发的厂家中,成都慧视凭借多年的丰富经验,已经形成一整套快速的开发流程,针对于RK3588这样的高性能图像处理板,能够快速定制SDI、CVBS、DVP、Cameralink等接口,满足不同行业的需求。并且,随着不少领域等目标跟踪稳定性的进一步提升,针对于高帧频目标跟踪这块,成都慧视也完成了成熟的方案,通过RK358+FPGA,实现高帧频相机的输入输出,为目标跟踪提供更多的细节信息。SpeedDP是算法工程师训练算法的得力帮手。北京智能化图像标注功能

人工标注的替代品有没有?湖北省时省力图像标注技术

深度学习技术,特别是神经网络,已经在图像和语音跟踪领域取得了不小的进展。这些技术可以应用于物联网设备,实现更加智能化的交互和控制。物联网、人工智能和大数据的融合正在开启一个智能化的新纪元。这种融合不仅推动了技术革新,还为各行各业带来了深刻的变革。随着技术的不断发展,这一融合将推动智能家居、智能城市、智能制造、智慧医疗等领域的发展,极大地提升人们的生活质量和工作效率。未来,物联网、人工智能和大数据的深度融合将为企业和个人带来更多的机遇和挑战,我们需要不断学习和探索新技术,以充分利用这些技术创造更美好的未来。湖北省时省力图像标注技术