瑞芯微推出的RK3588系列图像处理板作为国产化板卡的性能前列,成为了各领域研究开发的优先,它能在诸多行业实现目标检测、识别以及跟踪等功能,具有重要的研究开发价值。特别是对于高校而言,将RK3588作为课题进行研究开发,是一个不错的选择。但是在这些功能实现过程中,算法的能力就十分重要,如何让算法更加精细的识别检测例如人、车、船等目标成为首要解决的问题。要想让AI算法更能精确的识别检测目标,可以利用AI的深度学习能力,让AI不断学习这些目标的特征,从而达到精细识别的能力。这个过程,可以通过大量的数据标注,来训练AI。但大量待标注工作,常常让开发者头疼。如果采用传统方式用人工挨个挨帧标注,将会耗费大量时间精力,让成本不可控。图像标注工具有没有?山西多系统适配图像标注功能
作为成都慧视光电技术有限公司针对AI零基础用户的低门槛AI开发平台,SpeedDP深度学习算法开发平台提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。此外,针对于研究所等需要数据保密的企业单位,本地化服务器部署,能够让数据敏感的用户也无惧信息安全威胁。目前慧视SpeedDP主要提供目标检测算法的开发,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。云南比较好的图像标注产品传统的人工标注很累人。
YOLO(YouOnlyLookOnce)是一种目标检测算法,它使用深度神经网络模型,特别是卷积神经网络,来实时检测和分类对象。该算法开始被提出是在2016年的论文《YouOnlyLookOnce:统一的实时目标检测》中。自发布以来,由于其高准确性和速度,YOLO已成为目标检测和分类任务中很受欢迎的算法之一。它在各种目标检测基准测试中实现了高性能。就在2023年5月初,YOLO-NAS模型被引入到机器学习领域,它拥有更高的精度和速度,超越了其他模型如YOLOv7和YOLOv8。
我国西部地区地形复杂、天气多变,许多电网架设在高山流水之间,给电网的巡检维护造成了不小的困难。于是,不同于传统人工巡检的智能化巡检维护开始逐步应用。这种方式采用无人机加智能化机器人,其中无人机承担巡检工作,而智能化机器人进行维护,两者互相配合。无人机搭载智能化吊舱,吊舱内置图像识别传感器,工程师可以通过远程识别、抵近观察等方式,找出问题所在。无人机机动性灵活性十足,能够便捷去到许多人工难以到达的区域,巡检无死角。无人机巡检一次能够抵得上三个人工同时作业,效率成倍提升。图像算法工程师的工具利器。
成都慧视推出的深度学习算法开发平台SpeedDP,它的主要功能就是帮助进行算法模型的测试验证,进行快速的针对大量数据的AI自动标注,然后提升自身算法能力。在无人机智能炮弹测试验证中,通过对原始算法的模型训练,能够不断评估算法的能力,然后对新的打击数据集目标进行AI自动标注,让算法在学习中不断变得聪明。通过SpeedDP的应用,能够极大减少整个测试验证所需时间,减少人力成本支出,减少项目开发周期,让工程师不再为繁琐的图像标注浪费时间将更多的精力放在更重要的领域。海量的数据处理很烦心。山西多系统适配图像标注功能
SpeedDP能够实现目标检测、算法模型、项目参数的配置。山西多系统适配图像标注功能
目标检测(ObjectDetection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的主要问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域相当有有挑战性的问题。随着深度学习的不断发展,目标检测的应用愈加广,现已被应用于农业、交通和医学等众多领域。与基于特征的传统手工方法相比,基于深度学习的目标检测方法可以学习低级和高级图像特征,有更好的检测精度和泛化能力山西多系统适配图像标注功能