目标检测(ObjectDetection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的主要问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域相当有有挑战性的问题。随着深度学习的不断发展,目标检测的应用愈加广,现已被应用于农业、交通和医学等众多领域。与基于特征的传统手工方法相比,基于深度学习的目标检测方法可以学习低级和高级图像特征,有更好的检测精度和泛化能力AI算法提升平台SpeedDP。福建自主可控图像标注
传统意义上的图像跟踪主要分为两种,一种是通过在一定载体上安装定位设备并结合无线传输设备对载体的实时位置进行定位或描绘出移动轨迹,这种跟踪设备主要用于消防、户外探险等领域;另一种跟踪设备主要是指图像跟踪板,根据技术发展的过程,有基于DSP的图像跟踪板和基于AI芯片的图像跟踪板两种,其原理是通过提前在图像跟踪板中装入目标图像,跟踪板在视场内寻找类似的目标实时检测,找到之后进行实时跟踪。随着AI芯片的大规模应用,以及客户对跟踪板性能要求的提升,传统的基于DSP的图像跟踪技术已经难以达到应用的要求,很多总体单位对跟踪设备提出了智能学习、多目标检测、打了不管、更高的识别率等要求,基于AI的跟踪设备得到了越来越广泛的应用,例如各种空中侦查设备、抓捕设备、智能边海防设备、船用光电设备、智能化弹等都需要各种各样的智能图像跟踪设备进行匹配。河南如何图像标注技术AI自动标注工具选SpeedDP。
腾讯开发的机器人小五,采用轮、腿、足复合设计,使得它具备越障能力的同时,也保持了轮式机器人的运行效率。每条腿都可以单独伸长缩短,能有效提升承载能力。装上了双编码器大扭矩密度的执行器后,就能承受住一般成年人的重量。将机器人用于养老服务领域,能够帮老人取快递,抱老人起床,带老人进行活动。机器人内置RGBD相机,在图像处理板的赋能下,能够实时检测周边环境,进行路线规划和避障,以高效完成各项工作指令。同时能够对物体进行AI识别,判断老人位置、行为动作,为老人的行动做出帮助。
图像识别技术的高价值应用就发生在你我身边,例如视频监控、自动驾驶和智能医疗等,而这些图像识别进展的背后推动力是深度学习。深度学习的成功主要得益于三个方面:大规模数据集的产生、强有力的模型的发展以及可用的大量计算资源。对于各种各样的图像识别任务,精心设计的深度神经网络已经远远超越了以前那些基于人工设计的图像特征的方法。尽管到目前为止深度学习在图像识别方面已经取得了巨大成功,但在它进一步广泛应用之前,仍然有很多挑战需要我们去面对。图像算法工程师的工具利器。
利用无人机实现智能化识别能够帮助我们提升许多工作效率,在很多行业都有应用。像安防巡检、交通管理等,飞在高空的无人机比传统的地面巡逻更有视野,更能搜集掌握全局信息,再通过和地面巡逻的配合,能够有效减少工作量。但是在无人机识别的过程中会遇到很多问题,比如当环境变得复杂时,识别的精度可能就会受到影响。AI识别算法是一种深度学习的算法,它不是一成不变的,它也需要适应不同的环境,因此对于AI算法的训练也必不可少。海量的数据处理很烦心。河南如何图像标注技术
大量的图像标注工作交给AI。福建自主可控图像标注
在无人机摄像头的基础上加装慧视光电开发的Viztra-LE026图像处理板,这是一块轻型化、低功耗的图像处理板,用在无人机上面既不会过多占用空间,也不会过多消耗续航,通过目标识别算法的赋能,就可以针对像东北虎这样的动物AI自动识别,一旦识别到老虎的特征物体,无人机就能够立即锁定并抵近观察,为消防和公安提供精确坐标。Viztra-LE026图像处理板采用的是瑞芯微RV1126芯片,能够输出2.0TOPS的算力。而在算法方面,成都慧视能够提供一站式AI算法训练平台SpeedDP,通过对大量动物的标注数据集的模型训练,能够实现对新数据集的快速AI自动标注,然后提升识别算法的性能。福建自主可控图像标注