激光除草是通过激光照射杂草,使草叶内部细胞脱水破裂死亡的物理靶向除草方法。哈工大机器人实验室与华工科技合作研发的全天候智能激光除草机器人集成深度学习的人工智能技术,AI智能识别杂草,十分高效;同时针对性开发先进的多目标靶点定位及动态时延误差补偿算法,不仅能够准确高效识别杂草和高精度定位目标分生组织,同时不损伤作物、不污染土壤、不耗费人力,而且适应性强,生产效率高,促进农业经济高质量发展。激光除草模式中AI智能识别是很关键的一环,需要机器人正确识别杂草,而这基于AI的深度学习、目标识别检测等功能,通过不断的训练学习,AI能够精细识别什么是杂草什么是作物。目前,市面上比较好用的AI深度学习平台众多,例如成都慧视推出的SpeedDP深度学习算法开发平台,就能够通过大量的数据部署,再经过长时间的训练,就能够实现跟人眼一样的目标识别能力。图像标注很麻烦,所以需要AI介入。重庆智慧园区AI智能明火识别
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。河南算法定制AI智能方案**数据标注很麻烦,所以需要AI介入。
成都慧视光电技术有限公司推出的SpeedDP是针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP功能简洁、上手快,是当下进行AI深度学习训练的重要的工具。而且目标识别检测领域,成都慧视开发的高性能Viztra-HE030图像处理板,可以通过四大四小处理器高达6.0TOPS的算力,精细分析识别到的物体,区分作物和杂草,进而为机器人提供正确的信息,辅助除草。
随着生活品质的提升,现在无论是企业还是个人都对智能化的需求有所提升,这就对于摄像头提出了新的要求。现在市面上的传统摄像头都只具备记录功能,受限于镜头的视野范围,就算可以转动也必须是手动操作,尚不能实现自动化。但在智慧安防等领域,如果摄像头能够实现自动化转动,那将进一步提升安防水准。自动转动并不是目的,它的深层需求是需要对视野目标进行锁定跟踪,从而操控镜头转动。这就需要摄像头智能化。摄像头需求识别出现在镜头的物体。SpeedDP作为一个AI训练平台。
慧视光电开发的Viztra-HE030图像处理板采用了工业级芯片RK3588,内部植入公司自主研发的智能图像算法,架构更先进,核心数8核(4大4小),算力6.0TOPS,支持丰富的输出接口,同时支持H264、H265两类视频编码。可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。这是达成目的的硬件条件。在算法领域,则需要一些特殊的算法。无人机执行任务时飞在高空,地面的物体就会显得较小,小目标通常指图像中像素面积小于32*32的物体,一般的AI算法难以实现精细锁定跟踪。利用成都慧视推出的SpeedDP能够帮助训练AI算法。福建电力运维AI智能减员增效
图像标注工作需要花费大量时间精力。重庆智慧园区AI智能明火识别
图像标注就是给图像打上标签标记,例如矩形框等形式,在以前,需要招聘专门的图像标注师,随着AI的不断发展,这个行业正发生翻天覆地的变化。人工智能利用计算机和机器模仿人类思维来解决问题或制定决策。深度学习是人工智能的子领域,深度学习算法模型由神经网络组成。通过学习样本数据的特征表达以及数据分布来实现能够像人一样具备分析和识别目标的能力。目前,有许多功能性AI工具可以帮助我们进行图像标注,有的是纯手动拉框,有的则可以帮助我们进行自动标注。重庆智慧园区AI智能明火识别