在算法领域,实现小目标的识别则需要一些特殊的算法。无人机执行任务时飞在高空,地面的物体就会显得较小,小目标通常指图像中像素面积小于32*32的物体,一般的AI算法难以实现精细锁定跟踪。要解决这个难题,慧视光电的算法工程师给出了小目标识别算法的方案,通过加强目标特征、数据增广、放大输入图像、使用高分辨率的特征、设计合适的标签分配方法,以让小目标有更多的正样本、利用小目标所处的环境信息或者其他容易检测的物体之间的关系来辅助小目标的检测。此外,利用自研的深度学习算法开发平台,通过不断的深度学习,能够让AI更加精细的识别目标。这个方法在瑞芯微RK3588、RV1126、RK3399pro等系列图像跟踪板上得到了较好地验证。慧视光电可以根据吊舱定制AI图像处理板。贵州人防目标识别
无人机搭载如光电吊舱等带有摄像头的设备后,达到了实现智能识别的硬件条件,但是传统的摄像头只能获取图像,并不具备AI识别的功能。无人机AI识别算法的处理器还是在于模仿人眼一样进行视觉处理,然后AI进行智能提取和分析图像,再和训练模型进行快速比对,从而在无人机快速飞行的过程中做到实时目标识别。首先,要想实现目标识别需要的硬件支持就是AI图像处理板。图像处理板通过算法的赋能,就能够对目标区域的物体进行AI识别分析,从而做出判断。由于无人机作业的环境复杂,因此对于图像处理板的要求需要进一步提升。成都慧视开发的Viztra-HE030图像处理板,采用了工业级芯片RK3588,采用先进架构,8核(4大4小)处理,算力能够达到6.0TOPS。同时,慧视光电能够根据需求环境定制丰富的输出接口。云南流畅目标识别开发FPV目标识别用慧视开发的Viztra-HE030图像处理板。
激光除草模式中AI智能识别是很关键的一环,需要机器人正确识别杂草,而这基于AI的深度学习、目标识别检测等功能,通过不断的训练学习,AI能够精细识别什么是杂草什么是作物。目前,市面上比较好用的AI深度学习平台众多,例如成都慧视推出的SpeedDP深度学习算法开发平台,就能够通过大量的数据部署,再经过长时间的训练,就能够实现跟人眼一样的目标识别能力。慧视SpeedDP是针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP功能简洁、上手快,是当下进行AI深度学习训练的选择。而且目标识别检测领域,成都慧视开发的高性能Viztra-HE030图像处理板,可以通过四大四小处理器高达6.0TOPS的算力,精细分析识别到的物体,区分作物和杂草,进而为机器人提供正确的信息,辅助除草。
在硬件的选择上,慧视光电利用瑞芯微RV1126和RK3588开发的Viztra-LE026图像处理板和Viztra-HE030图像处理板已经在定制算法的赋能下,板卡可以根据相机的接口进行深度定制,可以很好地进行小目标的锁定跟踪。
而在算法领域,如果企业想要使用自己的算法,我司还可以提供算法训练提升平台SpeedDP,这是一个深度学习算法开发平台,企业可以利用算法模型的开发训练,通过大量的AI自动图像标注,能够让算法更加聪明,不断提升自身算法的精度。 监控摄像头目标识别慧视可以做。
八月前夕,国家领导团队就推进现代边海空防建设进行第十六次集体学习。指出要优化人民防空建设模式,构建现代人民防空体系。边海防是维护边防重要方式之一,为了应对迅速变化的环境以及国际形势,就需要对边海防模式进行升级,坚持系统观念,强化全局统筹,利用科技赋能,提高卫国戍边整体能力。随着无人机在军领域的广泛应用,无人机作为边海防新型手段的作用也越来越凸显。同时,光电吊舱和无人机的有机结合,也在不断构建边海空防立体智能管控体系。慧视光电开发的图像处理板可以用于目标识别。贵州人防目标识别
占用空间小的目标识别图像处理板。贵州人防目标识别
而对于洪峰过境的地区,搭载吊舱的无人机能够帮助开展雨前雨后水库大坝、重点堤坝和山区道路险情巡查,排除重大灾害隐患。针对受困地区的人,无人机还可以远距离投送救灾物资,通过远程喊话进行安抚工作。慧视光电推出的VIZ-GT07D三轴双光微型吊舱,是一款微型的三轴双光惯性稳定吊舱,集成了640×512高分辨率红外相机、1300万像素的全高清可见光相机和陀螺稳定平台。搭载于无人机上,能够在汛期应急救援领域开展全天候工作,实现高清成像、视频回传,为救援提供精细详细地信息。贵州人防目标识别